Suppr超能文献

使用 3-氨基酪氨酸来研究大肠杆菌核苷酸还原酶中自由基传播的途径依赖性。

Use of 3-aminotyrosine to examine the pathway dependence of radical propagation in Escherichia coli ribonucleotide reductase.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,Massachusetts 02139-4307, USA.

出版信息

Biochemistry. 2009 Dec 29;48(51):12125-32. doi: 10.1021/bi901439w.

Abstract

Escherichia coli ribonucleotide reductase (RNR), an alpha2beta2 complex, catalyzes the conversion of nucleoside 5'-diphosphate substrates (S) to 2'-deoxynucleoside 5'-diphosphates. alpha2 houses the active site for nucleotide reduction and the binding sites for allosteric effectors (E). beta2 contains the essential diferric tyrosyl radical (Y(122)()) cofactor which, in the presence of S and E, oxidizes C(439) in alpha to a thiyl radical, C(439)(), to initiate nucleotide reduction. This oxidation occurs over 35 A and is proposed to involve a specific pathway: Y(122)() --> W(48) --> Y(356) in beta2 to Y(731) --> Y(730) --> C(439) in alpha2. 3-Aminotyrosine (NH(2)Y) has been site-specifically incorporated at residues 730 and 731, and formation of the aminotyrosyl radical (NH(2)Y()) has been examined by stopped-flow (SF) UV-vis and EPR spectroscopies. To examine the pathway dependence of radical propagation, the double mutant complexes Y(356)F-beta2:Y(731)NH(2)Y-alpha2, Y(356)F-beta2:Y(730)NH(2)Y-alpha2, and wt-beta2:Y(731)F/Y(730)NH(2)Y-alpha2, in which the nonoxidizable F acts as a pathway block, were studied by SF and EPR spectroscopies. In all cases, no NH(2)Y() was detected. To study off-pathway oxidation, Y(413), located 5 A from Y(730) and Y(731) but not implicated in long-range oxidation, was examined. Evidence for NH(2)Y(413)() was sought in three complexes: wt-beta2:Y(413)NH(2)Y-alpha2 (a), wt-beta2:Y(731)F/Y(413)NH(2)Y-alpha2 (b), and Y(356)F-beta2:Y(413)NH(2)Y-alpha2 (c). With (a), NH(2)Y() was formed with a rate constant that was 25-30% and an amplitude that was 25% of that observed for its formation at residues 731 and 730. With (b), the rate constant for NH(2)Y() formation was 0.2-0.3% of that observed at 731 and 730, and with (c), no NH(2)Y(*) was observed. These studies suggest the evolution of an optimized pathway of conserved Ys in the oxidation of C(439).

摘要

大肠杆菌核糖核苷酸还原酶 (RNR),一种 α2β2 复合物,催化核苷 5'-二磷酸底物 (S) 转化为 2'-脱氧核苷 5'-二磷酸。α2 容纳核苷酸还原的活性位点和变构效应物 (E) 的结合位点。β2 包含必需的二价铁酪氨酸自由基 (Y(122)()) 辅因子,在 S 和 E 的存在下,将 α 中的 C(439)氧化为硫基自由基,C(439)(),以启动核苷酸还原。这种氧化发生在 35 Å 以上,据推测涉及特定途径:Y(122)() --> W(48) --> Y(356)在β2 到 Y(731) --> Y(730) --> C(439)在α2 中。3-氨基酪氨酸 (NH2Y) 已被特异性地掺入到残基 730 和 731 处,通过停流 (SF) UV-vis 和 EPR 光谱检查了氨基酪氨酸自由基 (NH2Y()) 的形成。为了检查自由基传播的途径依赖性,研究了双突变体复合物 Y(356)F-β2:Y(731)NH2Y-α2、Y(356)F-β2:Y(730)NH2Y-α2 和 wt-β2:Y(731)F/Y(730)NH2Y-α2,其中不可氧化的 F 充当途径阻断物,通过 SF 和 EPR 光谱进行了研究。在所有情况下,均未检测到 NH2Y()。为了研究偏离途径的氧化,研究了位于 Y(730)和 Y(731)的 5 Å 处但不参与长距离氧化的 Y(413)。在三个复合物中寻找 Y(413)NH2Y(413)()的证据:wt-β2:Y(413)NH2Y-α2 (a)、wt-β2:Y(731)F/Y(413)NH2Y-α2 (b)和 Y(356)F-β2:Y(413)NH2Y-α2 (c)。对于 (a),形成 NH2Y()的速率常数为其在残基 731 和 730 处形成的 25-30%,幅度为 25%。对于 (b),NH2Y()形成的速率常数为 731 和 730 处观察到的 0.2-0.3%,而对于 (c),则未观察到 NH2Y(*)。这些研究表明,在 C(439)的氧化中,保守 Ys 的优化途径发生了演变。

相似文献

引用本文的文献

2
Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase.核糖核苷酸还原酶内构象动态的自由基转移
J Am Chem Soc. 2017 Nov 22;139(46):16657-16665. doi: 10.1021/jacs.7b08192. Epub 2017 Nov 9.
3
Mechanisms for control of biological electron transfer reactions.生物电子转移反应的控制机制。
Bioorg Chem. 2014 Dec;57:213-221. doi: 10.1016/j.bioorg.2014.06.006. Epub 2014 Jul 12.

本文引用的文献

3
Tryptophan-accelerated electron flow through proteins.色氨酸加速电子通过蛋白质的流动。
Science. 2008 Jun 27;320(5884):1760-2. doi: 10.1126/science.1158241.
5
Real-time electron transfer in respiratory complex I.呼吸复合体I中的实时电子转移
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3763-7. doi: 10.1073/pnas.0711249105. Epub 2008 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验