Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA.
J Am Chem Soc. 2009 Nov 4;131(43):15729-38. doi: 10.1021/ja903879w.
E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, a process that requires long-range radical transfer over 35 A from a tyrosyl radical (Y(122)) within the beta2 subunit to a cysteine residue (C(439)) within the alpha2 subunit. The radical transfer step is proposed to occur by proton-coupled electron transfer via a specific pathway consisting of Y(122) --> W(48) --> Y(356) in beta2, across the subunit interface to Y(731) --> Y(730) --> C(439) in alpha2. Using the suppressor tRNA/aminoacyl-tRNA synthetase (RS) methodology, 3-aminotyrosine has been incorporated into position 730 in alpha2. Incubation of this mutant with beta2, substrate, and allosteric effector resulted in loss of the Y(122) and formation of a new radical, previously proposed to be a 3-aminotyrosyl radical (NH(2)Y*). In the current study [(15)N]- and [(14)N]-NH(2)Y(730)* have been generated in H(2)O and D(2)O and characterized by continuous wave 9 GHz EPR and pulsed EPR spectroscopies at 9, 94, and 180 GHz. The data give insight into the electronic and molecular structure of NH(2)Y(730). The g tensor (g(x) = 2.0052, g(y) = 2.0042, g(z) = 2.0022), the orientation of the beta-protons, the hybridization of the amine nitrogen, and the orientation of the amino protons relative to the plane of the aromatic ring were determined. The hyperfine coupling constants and geometry of the NH(2) moiety are consistent with an intramolecular hydrogen bond within NH(2)Y(730). This analysis is an essential first step in using the detailed structure of NH(2)Y(730)* to formulate a model for a PCET mechanism within alpha2 and for use of NH(2)Y in other systems where transient Y*s participate in catalysis.
大肠杆菌核糖核苷酸还原酶 (RNR) 催化核苷酸转化为脱氧核苷酸,这一过程需要通过β2 亚基中的酪氨酸自由基 (Y(122)*) 到α2 亚基中的半胱氨酸残基 (C(439)) 之间进行长达 35Å 的远程自由基转移。自由基转移步骤被认为是通过质子偶联电子转移发生的,通过特定途径,包括β2 中的 Y(122) --> W(48) --> Y(356),穿过亚基界面到α2 中的 Y(731) --> Y(730) --> C(439)。使用抑制 tRNA/氨酰-tRNA 合成酶 (RS) 方法,3-氨基酪氨酸已被掺入到α2 中的位置 730。将这种突变体与β2、底物和变构效应物孵育,导致 Y(122)的丢失和新自由基的形成,之前认为该自由基是 3-氨基酪氨酸自由基 (NH(2)Y)。在当前的研究中,[(15)N]-和[(14)N]-NH(2)Y(730)*在 H(2)O 和 D(2)O 中生成,并通过 9GHz、94GHz 和 180GHz 的连续波 EPR 和脉冲 EPR 光谱学进行表征。这些数据提供了对 NH(2)Y(730)的电子和分子结构的深入了解。g 张量 (g(x)=2.0052, g(y)=2.0042, g(z)=2.0022)、β-质子的取向、胺氮的杂化以及氨基质子相对于芳香环平面的取向都得到了确定。NH(2)部分的超精细耦合常数和几何形状与 NH(2)Y(730) 中的分子内氢键一致。这一分析是在使用 NH(2)Y(730)的详细结构来构建α2 内的 PCET 机制模型以及在其他瞬态 Y参与催化的系统中使用 NH(2)Y 的关键的第一步。