Cologne University of Applied Sciences, 50679 Cologne, Germany.
J Chem Phys. 2009 Nov 14;131(18):184507. doi: 10.1063/1.3256004.
The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.
采用 GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] 算法,利用平衡和非平衡分子动力学模拟,确定了高斯核模型的固液相平衡。这是首次将 GWTS 算法应用于呈现再入熔化现象的流体系统。通过 GWTS 算法,可以比以前更精确地计算高斯核模型的相图。固态低密度和高密度(再入熔化)两侧的结果与蒙特卡罗模拟结合固体自由能计算得到的结果吻合较好。在高斯核包络线上,等密度固液共存的公共点可以高精度地确定。