John H. Stroger, Jr, Hospital of Cook County, Chicago, Illinois, USA.
Infect Control Hosp Epidemiol. 2010 Jan;31(1):4-11. doi: 10.1086/649015.
To develop prediction algorithms for the presence of a central vascular catheter in hospitalized patients with use of data present in an electronic health record. Such algorithms could be used for measurement of device utilization rates and for clinical decision support rules.
Criterion standard.
John H. Stroger, Jr, Hospital of Cook County, a 464-bed public hospital in Chicago, Illinois.
Patients admitted to the medical intensive care unit from May 31, 2005 through June 26, 2006 (derivation data set, May 31, 2005-September 28, 2005; validation data set, September 29, 2005-June 28, 2006).
Covariates were collected from the electronic medical record for each patient; the outcome variable was presence of a central vascular device. Multivariate models were developed using the derivation set and the generalized estimating equation. Three models, each with increasing database requirements, were validated using the validation set. Device utilization ratios and performance characteristics were calculated.
Although Charlson score and duration of intensive care unit stay were significant predictors in all models, factors that indicated use or presence of a central line were also important. Device utilization rates derived from the algorithmic models were as accurate as those obtained using manual sampling.
Automated calculation of central vascular catheter use is both feasible and accurate, providing estimates statistically similar to those obtained using manual surveillance. Prediction modeling of central vascular catheter use may enable automated surveillance of bloodstream infections and enhance important prevention interventions, such as timely removal of unnecessary central lines.
利用电子健康记录中存在的数据,开发预测住院患者存在中心血管导管的预测算法。这些算法可用于测量设备使用率和临床决策支持规则。
标准对照。
伊利诺伊州芝加哥市 464 床位的公共医院约翰·H·斯特罗格,Jr 医院。
2005 年 5 月 31 日至 2006 年 6 月 26 日入住医疗重症监护病房的患者(推导数据集,2005 年 5 月 31 日至 2005 年 9 月 28 日;验证数据集,2005 年 9 月 29 日至 2006 年 6 月 28 日)。
从每位患者的电子病历中收集协变量;因变量是存在中心血管装置。使用推导集和广义估计方程开发多变量模型。使用验证集验证了三个模型,每个模型的数据库要求都在增加。计算设备使用率和性能特征。
尽管 Charlson 评分和重症监护病房停留时间在所有模型中都是重要的预测因素,但表明使用或存在中心导管的因素也很重要。从算法模型得出的设备使用率与使用手动抽样获得的使用率一样准确。
自动计算中心血管导管的使用是可行且准确的,提供的估计值与使用手动监测获得的估计值在统计学上相似。中心血管导管使用的预测模型可能能够实现对血流感染的自动监测,并增强重要的预防干预措施,例如及时去除不必要的中心导管。