Center for Information Science, Kokushikan University, Tokyo, Japan.
Network. 2009;20(4):233-52. doi: 10.3109/09548980903373879.
Natural images are rich in higher order spatial correlations. Brain scanning, psychophysics and electrophysiology indicate that humans are sensitive to these image properties. A useful tool for exploring this sense is the set of isotrigon textures. Like natural images these textures have low dimensionality relative to random images, but like random images contain no average structure in their first to third order correlation functions. Thus, the structured appearance of these textures results from higher order correlations. One way to generate the higher order products inherent in higher order correlations is recursive nonlinear processing. We therefore decided to examine if very small oscillator networks could produce a profile of activity that matches human isotrigon discrimination performance across 53 isotrigon texture types. Human performance was measured in 23 subjects. The two best network types found contained as few as 4 oscillators. The input oscillators are of a novel cubic form and the final readout oscillator was a logistic oscillator. Mean readout oscillator activity matched human performance reasonably well even though the network parameters were fixed for all 53 texture types. Overall it appears that relatively simple, short range, and biologically plausible, recursive processing could provide the basis for discrimination of complex form.
自然图像具有丰富的高阶空间相关性。大脑扫描、心理物理学和电生理学表明,人类对这些图像属性很敏感。探索这种感觉的一个有用工具是一组等三角纹理。与自然图像一样,这些纹理的维度相对于随机图像较低,但与随机图像一样,它们的一阶到三阶相关函数中没有平均结构。因此,这些纹理的结构化外观是由高阶相关性产生的。产生高阶相关性中固有高阶乘积的一种方法是递归非线性处理。因此,我们决定检查非常小的振荡器网络是否可以产生与人类等三角纹理辨别性能相匹配的活动模式,涵盖 53 种等三角纹理类型。人类的表现由 23 名受试者进行测量。发现的两种最佳网络类型包含的振荡器数量少至 4 个。输入振荡器采用新颖的立方形式,最终的读出振荡器是逻辑振荡器。即使对于所有 53 种纹理类型,网络参数都是固定的,平均读出振荡器的活动与人类的表现相当吻合。总的来说,似乎相对简单、短程且具有生物学合理性的递归处理可以为复杂形式的辨别提供基础。