Gravendeel Lonneke A M, Kouwenhoven Mathilde C M, Gevaert Olivier, de Rooi Johan J, Stubbs Andrew P, Duijm J Elza, Daemen Anneleen, Bleeker Fonnet E, Bralten Linda B C, Kloosterhof Nanne K, De Moor Bart, Eilers Paul H C, van der Spek Peter J, Kros Johan M, Sillevis Smitt Peter A E, van den Bent Martin J, French Pim J
Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Cancer Res. 2009 Dec 1;69(23):9065-72. doi: 10.1158/0008-5472.CAN-09-2307. Epub 2009 Nov 17.
Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.
神经胶质瘤是最常见的原发性脑肿瘤,形态各异,预后不一。患者的治疗决策主要依赖于组织学分类和临床参数。然而,组织学亚类和分级之间的差异很细微,对神经胶质瘤进行分类存在较大的观察者间差异。为了改进当前的分类标准,我们对一大组所有组织学亚型和分级的神经胶质瘤样本进行了基因表达谱分析。我们确定了七个与生存相关的不同分子亚组。其中包括两个预后良好的亚组(中位生存期>4.7年),两个预后中等的亚组(中位生存期1 - 4年),两个预后较差的亚组(中位生存期<1年),以及一个对照组。神经胶质瘤的内在分子亚型不同于组织学亚组,与患者生存的相关性更好。分子亚组的预后价值在五个独立样本队列(癌症基因组图谱、分子脑肿瘤数据储存库、GSE12907、GSE4271以及Li及其同事的研究)中得到了验证。内在亚型分类的强大作用体现在其能够在仅包含组织学确诊的胶质母细胞瘤(GBM)的外部数据集中识别出一部分预后良好的肿瘤。特定的基因变化(表皮生长因子受体扩增、异柠檬酸脱氢酶1突变以及1p/19q杂合性缺失)在不同的分子亚组中分离。我们确定了一个具有与继发性GBM相关分子特征的亚组,这表明不同的基因变化驱动了基因表达谱。最后,我们评估了分子亚组对治疗的反应。我们的数据提供了令人信服的证据,表明与组织学分类相比,表达谱分析是一种更准确、客观的神经胶质瘤分类方法。因此,分子分类可能有助于诊断,并可指导临床决策。