Suppr超能文献

蛋白质沉淀剂界面和外加剪切力对溶菌酶晶体成核与生长的影响。

The effect of protein-precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals.

作者信息

Reis Nuno M, Chirgadze Dimitri Y, Blundell Tom L, Mackley Malcolm R

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, England.

出版信息

Acta Crystallogr D Biol Crystallogr. 2009 Nov;65(Pt 11):1127-39. doi: 10.1107/S0907444909031527. Epub 2009 Oct 22.

Abstract

This paper is concerned with the effect of protein-precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein-precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable 'fingers' that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.

摘要

本文关注蛋白质沉淀剂界面以及外部施加的剪切力对鸡蛋清溶菌酶晶体成核和生长动力学的影响。利用光学显微镜和共聚焦荧光显微镜成像对溶菌酶微批量结晶的早期阶段进行了探索。最初,将一种反溶剂(沉淀剂)添加到蛋白质液滴中,并随时间跟踪蛋白质 - 沉淀剂界面的光学变化。在水溶性聚合物聚乙二醇(PEG)存在的情况下,观察到液滴内立即形成了一个清晰的界面,使较轻的蛋白质溶液和较重的沉淀剂初步清晰分离。该界面随后变得不稳定,并在几秒钟内迅速发展成几个不稳定的“指状物”,这些“指状物”代表了高浓度梯度界面区域。共聚焦显微镜显示,蛋白质晶体随后的成核优先发生在这些界面区域。使用光学剪切系统进行的额外实验表明,振荡剪切显著降低了成核速率,同时延长了溶菌酶晶体的生长周期。与成核和生长相关的实验观察结果对于开发通用结晶程序的高效可靠方案以及用于X射线晶体学的单个大型高质量蛋白质晶体的可控结晶具有重要意义。

相似文献

1
The effect of protein-precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals.
Acta Crystallogr D Biol Crystallogr. 2009 Nov;65(Pt 11):1127-39. doi: 10.1107/S0907444909031527. Epub 2009 Oct 22.
3
Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD.
Acta Crystallogr D Biol Crystallogr. 2000 Aug;56(Pt 8):952-8. doi: 10.1107/s0907444900006685.
4
Proline/alanine-rich sequence (PAS) polypeptides as an alternative to PEG precipitants for protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2020 Jul 1;76(Pt 7):320-325. doi: 10.1107/S2053230X20008328.
5
Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.
J Synchrotron Radiat. 2008 May;15(Pt 3):312-5. doi: 10.1107/S0909049507059559. Epub 2008 Apr 18.
6
Nucleation-Supersaturation Dual-Drive Crystallization Strategy Enables Efficient Protein Crystallization.
Small. 2024 May;20(20):e2307924. doi: 10.1002/smll.202307924. Epub 2023 Dec 10.
7
Beneficial effect of solubility enhancers on protein crystal nucleation and growth.
Langmuir. 2009 Apr 21;25(8):4579-87. doi: 10.1021/la803185m.
8
Nucleation of protein crystals under the influence of solution shear flow.
Ann N Y Acad Sci. 2006 Sep;1077:214-31. doi: 10.1196/annals.1362.048.
9
Growth and characterization of high-quality protein crystals for X-ray crystallography.
Ann N Y Acad Sci. 2009 Apr;1161:429-36. doi: 10.1111/j.1749-6632.2008.04078.x.
10
Control of nucleation in the crystallization of lysozyme.
Protein Sci. 1993 Jan;2(1):113-8. doi: 10.1002/pro.5560020112.

引用本文的文献

本文引用的文献

1
Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals.
Cryst Growth Des. 2007;7(11):2192-2194. doi: 10.1021/cg700688f.
2
Nucleation of protein crystals under the influence of solution shear flow.
Ann N Y Acad Sci. 2006 Sep;1077:214-31. doi: 10.1196/annals.1362.048.
3
Using microfluidics to observe the effect of mixing on nucleation of protein crystals.
J Am Chem Soc. 2005 Jul 13;127(27):9672-3. doi: 10.1021/ja052279v.
4
Automated systems for protein crystallization.
Methods. 2004 Nov;34(3):329-47. doi: 10.1016/j.ymeth.2004.03.029.
6
Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination.
J Struct Biol. 2003 Apr;142(1):218-31. doi: 10.1016/s1047-8477(03)00052-2.
7
The prospects of protein nanocrystallography.
Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1901-6. doi: 10.1107/s0907444902016608. Epub 2002 Oct 21.
8
Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1549-53. doi: 10.1107/s0907444902014439. Epub 2002 Sep 26.
9
New strategies for protein crystal growth.
Annu Rev Biomed Eng. 1999;1:505-34. doi: 10.1146/annurev.bioeng.1.1.505.
10
High-throughput protein crystallization.
Curr Opin Struct Biol. 2000 Oct;10(5):558-63. doi: 10.1016/s0959-440x(00)00131-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验