State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Small. 2024 May;20(20):e2307924. doi: 10.1002/smll.202307924. Epub 2023 Dec 10.
A rational crystallization strategy is essential to obtain high-quality protein crystals, yet the established methods suffer from different limitations arising from the single regulation on either nucleation or supersaturation. Herein, a nucleation-supersaturation dual-driven crystallization (DDC) strategy that realizes synergistic regulation of heterogeneous nucleation sites and solution supersaturation based on dual surface and confinement effects for efficient protein crystallization is reported. This strategy relies on a p(PEGDA-co-DMAA) hydrogel template with pre-filled NaCl under designed concentrations. Once dropping hen egg white lysozyme (HEWL) protein solution on the hydrogel, the wrinkled surface provides numerous nucleation sites, while the internal structure regulates the solution supersaturation in the crystallization region through diffusion. Finally, DDC strategy can create high-quality HEWL crystals with large sizes (100-300 µm), well-defined morphologies (hexagon and tetragon), and a significantly accelerated nucleation time (9-12 times faster than that achieved using the conventional hanging drop method). It also performs well at wider protein concentrations (10-50 mg mL) and categories (e.g., achieving fast crystallization and large-size crystals of trypsin), therefore demonstrating clear advantages and great potential for efficiently fabricating protein crystals desirable for diverse applications.
一种理性的结晶策略对于获得高质量的蛋白质晶体至关重要,但已建立的方法由于单一调节成核或过饱和度而存在不同的局限性。在此,报道了一种基于双表面和限域效应的成核-过饱和度双重驱动结晶(DDC)策略,该策略可以协同调节异相成核点和溶液过饱和度,从而有效地实现蛋白质结晶。该策略依赖于填充有设计浓度的 NaCl 的 p(PEGDA-co-DMAA)水凝胶模板。一旦将鸡卵清溶菌酶(HEWL)蛋白质溶液滴在水凝胶上,褶皱表面提供了许多成核点,而内部结构通过扩散调节结晶区域的溶液过饱和度。最后,DDC 策略可以生成具有大尺寸(100-300µm)、形貌清晰(六边形和四边形)的高质量 HEWL 晶体,且成核时间明显加快(比传统的悬滴法快 9-12 倍)。它在更宽的蛋白质浓度(10-50mgmL)和类别(例如,快速结晶和获得较大尺寸的胰蛋白酶晶体)下也表现良好,因此在高效制备适用于各种应用的蛋白质晶体方面具有明显的优势和巨大的潜力。