Suppr超能文献

全基因组范围内 SMAD 靶基因的作图揭示了 BMP 信号在胚胎干细胞命运决定中的作用。

Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination.

机构信息

The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.

出版信息

Genome Res. 2010 Jan;20(1):36-44. doi: 10.1101/gr.092114.109. Epub 2009 Nov 19.

Abstract

Embryonic stem (ES) cells are under precise control of both intrinsic self-renewal gene regulatory network and extrinsic growth factor-triggered signaling cascades. How external signaling pathways connect to core self-renewal transcriptional circuits is largely unknown. To probe this, we chose BMP signaling, which is previously recognized as a master control for both self-renewal and lineage commitment of murine ES cells. Here, we mapped target gene promoter occupancy of SMAD1/5 and SMAD4 on a genome-wide scale and found that they associate with a large group of developmental regulators that are enriched for H3K27 trimethylation and H3K4 trimethylation bivalent marks and are repressed in the self-renewing state, whereas they are rapidly induced upon differentiation. Smad knockdown experiments further indicate that SMAD-mediated BMP signaling is largely required for differentiation-related processes rather than directly influencing self-renewal. Among the SMAD-associated genes, we further identified Dpysl2 (previously known as Crmp2) and the H3K27 demethylase Kdm6b (previously known as Jmjd3) as BMP4-modulated early neural differentiation regulators. Combined with computational analysis, our results suggest that SMAD-mediated BMP signaling balances self-renewal versus differentiation by modulating a set of developmental regulators.

摘要

胚胎干细胞(ES 细胞)受到内在自我更新基因调控网络和外在生长因子触发的信号级联的精确控制。外部信号通路如何与核心自我更新转录电路连接在很大程度上是未知的。为了探究这一点,我们选择了 BMP 信号,它以前被认为是控制小鼠 ES 细胞自我更新和谱系决定的主要调控因子。在这里,我们在全基因组范围内绘制了 SMAD1/5 和 SMAD4 的靶基因启动子占据图谱,发现它们与一大组发育调节剂相关联,这些调节剂富含 H3K27 三甲基化和 H3K4 三甲基化二价标记,在自我更新状态下受到抑制,而在分化时则迅速诱导。Smad 敲低实验进一步表明,SMAD 介导的 BMP 信号对于分化相关过程是必需的,而不是直接影响自我更新。在与 SMAD 相关的基因中,我们进一步鉴定出 Dpysl2(以前称为 Crmp2)和 H3K27 去甲基酶 Kdm6b(以前称为 Jmjd3)作为 BMP4 调节的早期神经分化调节剂。结合计算分析,我们的结果表明,SMAD 介导的 BMP 信号通过调节一组发育调节剂来平衡自我更新与分化。

相似文献

1
Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination.
Genome Res. 2010 Jan;20(1):36-44. doi: 10.1101/gr.092114.109. Epub 2009 Nov 19.
2
BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells.
Stem Cell Reports. 2016 Jan 12;6(1):85-94. doi: 10.1016/j.stemcr.2015.11.012. Epub 2015 Dec 17.
3
BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways.
Blood. 2014 Jul 17;124(3):393-402. doi: 10.1182/blood-2014-02-556993. Epub 2014 Jun 3.
5
Role of smad- and wnt-dependent pathways in embryonic cardiac development.
Stem Cells Dev. 2006 Feb;15(1):29-39. doi: 10.1089/scd.2006.15.29.
6
Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts.
Cell Physiol Biochem. 2010;26(6):1093-102. doi: 10.1159/000323987. Epub 2011 Jan 4.
7
Transcriptional factors smad1 and smad9 act redundantly to mediate zebrafish ventral specification downstream of smad5.
J Biol Chem. 2014 Mar 7;289(10):6604-6618. doi: 10.1074/jbc.M114.549758. Epub 2014 Jan 31.
8
SMAD expression in the testis: an insight into BMP regulation of spermatogenesis.
Dev Dyn. 2008 Jan;237(1):97-111. doi: 10.1002/dvdy.21401.
9
Smad1/5 and Smad4 expression are important for osteoclast differentiation.
J Cell Biochem. 2015 Jul;116(7):1350-60. doi: 10.1002/jcb.25092.

引用本文的文献

1
Positional BMP signaling orchestrates villus length in the small intestine.
Nat Commun. 2025 Jul 1;16(1):5461. doi: 10.1038/s41467-025-60643-2.
2
BMP suppresses Wnt signaling via the Bcl11b-regulated NuRD complex to maintain intestinal stem cells.
EMBO J. 2024 Dec;43(23):6032-6051. doi: 10.1038/s44318-024-00276-1. Epub 2024 Oct 21.
3
Signaling Pathways Governing Cardiomyocyte Differentiation.
Genes (Basel). 2024 Jun 18;15(6):798. doi: 10.3390/genes15060798.
4
Cellular and Molecular Mechanisms of Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva.
Biomedicines. 2024 Apr 2;12(4):779. doi: 10.3390/biomedicines12040779.
6
The Divergent Pluripotent States in Mouse and Human Cells.
Genes (Basel). 2022 Aug 16;13(8):1459. doi: 10.3390/genes13081459.
7
Global Gene Expression Regulation Mediated by TGFβ Through H3K9me3 Mark.
Cancer Inform. 2022 Jul 30;21:11769351221115135. doi: 10.1177/11769351221115135. eCollection 2022.
9
AR cooperates with SMAD4 to maintain skeletal muscle homeostasis.
Acta Neuropathol. 2022 Jun;143(6):713-731. doi: 10.1007/s00401-022-02428-1. Epub 2022 May 6.

本文引用的文献

1
BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation.
Development. 2009 Apr;136(7):1093-104. doi: 10.1242/dev.029926. Epub 2009 Feb 18.
2
Roles of TGF-beta family signaling in stem cell renewal and differentiation.
Cell Res. 2009 Jan;19(1):103-15. doi: 10.1038/cr.2008.323.
3
The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment.
PLoS One. 2008 Aug 21;3(8):e3034. doi: 10.1371/journal.pone.0003034.
4
Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET.
Genome Biol. 2008;9(8):R126. doi: 10.1186/gb-2008-9-8-r126. Epub 2008 Aug 13.
6
The ground state of embryonic stem cell self-renewal.
Nature. 2008 May 22;453(7194):519-23. doi: 10.1038/nature06968.
7
Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells.
Nat Cell Biol. 2008 Jun;10(6):731-9. doi: 10.1038/ncb1736. Epub 2008 May 4.
8
An extended transcriptional network for pluripotency of embryonic stem cells.
Cell. 2008 Mar 21;132(6):1049-61. doi: 10.1016/j.cell.2008.02.039.
9
Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells.
Genes Dev. 2008 Mar 15;22(6):746-55. doi: 10.1101/gad.1642408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验