Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20723-7. doi: 10.1073/pnas.0908431106. Epub 2009 Nov 19.
Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and are attractive targets for drug discovery. Haloxyfop and tepraloxydim belong to two distinct classes of commercial herbicides and kill sensitive plants by inhibiting the carboxyltransferase (CT) activity of ACC. Our earlier structural studies showed that haloxyfop is bound near the active site of the CT domain, at the interface of its dimer, and a large conformational change in the dimer interface is required for haloxyfop binding. We report here the crystal structure at 2.3 A resolution of the CT domain of yeast ACC in complex with tepraloxydim. The compound has a different mechanism of inhibiting the CT activity compared to haloxyfop, as well as the mammalian ACC inhibitor CP-640186. Tepraloxydim probes a different region of the dimer interface and requires only small but important conformational changes in the enzyme, in contrast to haloxyfop. The binding mode of tepraloxydim explains the structure-activity relationship of these inhibitors, and provides a molecular basis for their distinct sensitivity to some of the resistance mutations, as compared to haloxyfop. Despite the chemical diversity between haloxyfop and tepraloxydim, the compounds do share two binding interactions to the enzyme, which may be important anchoring points for the development of ACC inhibitors.
乙酰辅酶 A 羧化酶(ACCs)是至关重要的代谢酶,是药物发现的有吸引力的靶标。精吡氟禾草灵和噁唑禾草灵属于两种不同类别的商业除草剂,通过抑制 ACC 的羧基转移酶(CT)活性来杀死敏感植物。我们之前的结构研究表明,精吡氟禾草灵结合在 CT 结构域的活性部位附近,位于其二聚体的界面处,并且二聚体界面的大构象变化是结合精吡氟禾草灵所必需的。我们在此报告酵母 ACC 的 CT 结构域与噁唑禾草灵复合物的晶体结构,分辨率为 2.3A。与精吡氟禾草灵相比,该化合物具有不同的抑制 CT 活性的机制,以及与哺乳动物 ACC 抑制剂 CP-640186 相比。噁唑禾草灵探测二聚体界面的不同区域,与精吡氟禾草灵相比,仅需要酶的小但重要的构象变化。噁唑禾草灵的结合模式解释了这些抑制剂的结构-活性关系,并为它们对一些抗性突变的不同敏感性提供了分子基础,与精吡氟禾草灵相比。尽管精吡氟禾草灵和噁唑禾草灵在化学结构上存在差异,但这两种化合物确实与酶具有两种结合相互作用,这可能是开发 ACC 抑制剂的重要锚固点。