Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
Circ Res. 2010 Feb 5;106(2):399-408. doi: 10.1161/CIRCRESAHA.109.211292. Epub 2009 Nov 19.
Recurrent ventricular arrhythmias after initial successful defibrillation are associated with poor clinical outcome.
We tested the hypothesis that postshock arrhythmias occur because of spontaneous sarcoplasmic reticulum Ca release, delayed afterdepolarization (DAD), and triggered activity (TA) from tissues with high sensitivity of resting membrane voltage (V(m)) to elevated intracellular calcium (Ca(i)) (high diastolic Ca(i)-voltage coupling gains).
We simultaneously mapped Ca(i) and V(m) on epicardial (n=14) or endocardial (n=14) surfaces of Langendorff-perfused rabbit ventricles. Spontaneous Ca(i) elevation (SCaE) was noted after defibrillation in 32% of ventricular tachycardia/ventricular fibrillation at baseline and in 81% during isoproterenol infusion (0.01 to 1 micromol/L). SCaE was reproducibly induced by rapid ventricular pacing and inhibited by 3 mumol/L of ryanodine. The SCaE amplitude and slope increased with increasing pacing rate, duration, and dose of isoproterenol. We found TAs originating from 6 of 14 endocardial surfaces but none from epicardial surfaces, despite similar amplitudes and slopes of SCaEs between epicardial and endocardial surfaces. This was because DADs were larger on endocardial surfaces as a result of higher diastolic Ca(i)-voltage coupling gain, compared to those of epicardial surfaces. Purkinje-like potentials preceded TAs in all hearts studied (n=7). I(K1) suppression with CsCl (5 mmol/L, n=3), BaCl(2) (3 micromol/L, n=3), and low extracellular potassium (1 mmol/L, n=2) enhanced diastolic Ca(i)-voltage coupling gain and enabled epicardium to also generate TAs.
Higher diastolic Ca(i)-voltage coupling gain is essential for genesis of TAs and may underlie postshock arrhythmias arising from Purkinje fibers. I(K)(1) is a major factor that determines the diastolic Ca(i)-voltage coupling gain.
初始除颤成功后反复发作的室性心律失常与不良临床预后相关。
我们检验了这样一个假设,即在电击后发生心律失常是由于肌浆网 Ca 释放、延迟后除极(DAD)和触发活动(TA)所致,这些组织的静息膜电位(V(m))对细胞内 Ca(i)升高(高舒张 Ca(i)-电压耦联增益)具有高敏感性。
我们同时在 Langendorff 灌流兔心室的心外膜(n=14)或心内膜(n=14)表面进行 Ca(i)和 V(m)的映射。在基础状态下,电击除颤后 32%的室性心动过速/心室颤动中观察到自发性 Ca(i)升高(SCaE),而在异丙肾上腺素输注(0.01 至 1 微摩尔/升)期间则有 81%观察到 SCaE。快速心室起搏可重现性地诱导 SCaE,并被 3 微摩尔/升的 Ryanodine 抑制。随着起搏率、持续时间和异丙肾上腺素剂量的增加,SCaE 的幅度和斜率增加。我们发现,在 14 个心内膜表面中有 6 个表面起源于 TA,但在心外膜表面上没有。尽管心外膜和心内膜表面的 SCaE 幅度和斜率相似,但这是因为与心外膜表面相比,心内膜表面的 DAD 较大,导致舒张期 Ca(i)-电压耦联增益较高。在所有研究的心脏(n=7)中,均观察到 Purkinje 样电位先于 TA。用 CsCl(5 毫摩尔/升,n=3)、BaCl2(3 微摩尔/升,n=3)和低细胞外钾(1 毫摩尔/升,n=2)抑制 I(K1),增强舒张期 Ca(i)-电压耦联增益,使心外膜也能产生 TA。
较高的舒张期 Ca(i)-电压耦联增益对于 TA 的发生至关重要,可能是电击后源自浦肯野纤维的心律失常的基础。I(K)(1)是决定舒张期 Ca(i)-电压耦联增益的主要因素。