Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
J Mol Cell Cardiol. 2020 May;142:24-38. doi: 10.1016/j.yjmcc.2020.04.001. Epub 2020 Apr 3.
Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs electrophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and following drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by I reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca accumulation, at fast pacing, caused by large L-type calcium current and small Na/Ca exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations.
心肌浦肯野细胞(PCs)与心脏疾病、突变和药物作用引起的致命性心律失常有关。然而,PCs 的致心律失常机制尚未完全了解,特别是在人类中,因为大多数研究都是在动物中进行的。本研究旨在提出一种新的人类 PCs 电生理生物物理详细计算模型,并阐明人类浦肯野相关电生理、起搏活性和致心律失常性的离子机制。新的 Trovato2020 模型包含详细的浦肯野特异性离子电流和 Ca 处理,并使用在多个频率下获得的人类实验数据进行了开发、校准和验证,包括对照条件和药物应用后。在浦肯野细胞、纤维和使用经过实验校准的浦肯野细胞群体中进行了多尺度研究,以评估生物变异性。模拟表明,人类浦肯野 Trovato2020 模型是第一个产生以下结果的模型:(i)与人类浦肯野记录一致的所有关键 AP 特征;(ii)具有 funny 电流上调的自动性;(iii)在缓慢起搏和 85% hERG 阻断时出现 EADs;(iv)在快速起搏后出现 DADs;(v)在人类报告的浦肯野纤维中,传导速度为 160 cm/s。人类计算机模拟 PCs 群体强调:(1)EADs 是由具有大内向电流的 PCs 中的 I 再激活引起的;(2)DADs 和触发的 AP 发生在经历 Ca 积累的 PCs 中,这是由大 L 型钙电流和小 Na/Ca 交换器引起的,在快速起搏时发生。新的人类浦肯野模型通过计算机建模和多尺度模拟,为进一步研究心脏浦肯野在室性心律失常中的作用提供了可能。