Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, UT 84112-0850, USA.
J Mol Biol. 2010 Feb 19;396(2):252-63. doi: 10.1016/j.jmb.2009.11.034. Epub 2009 Nov 18.
We used all-atom molecular dynamics simulations to investigate the structure and properties of the actin filament, starting with either the recent Oda model or the older Holmes model. Simulations of monomeric and polymerized actin show that polymerization changes the nucleotide-binding cleft, bringing together the Q137 side chain and bound ATP in a way that may enhance the ATP hydrolysis rate in the filament. Simulations with different bound nucleotides and conformations of the DNase I binding loop show that the persistence length of the filament depends only on loop conformation. Computational modeling reveals how bound phalloidin stiffens actin filaments and inhibits the release of gamma-phosphate from ADP-P(i) actin.
我们使用全原子分子动力学模拟,从最近的 Oda 模型或较旧的 Holmes 模型开始,研究肌动蛋白丝的结构和性质。单体和聚合肌动蛋白的模拟表明,聚合改变了核苷酸结合裂隙,将 Q137 侧链和结合的 ATP 聚集在一起,从而可能提高丝中的 ATP 水解速率。用不同结合的核苷酸和 DNase I 结合环的构象进行的模拟表明,丝的持久长度仅取决于环构象。计算模型揭示了结合的鬼笔环肽如何使肌动蛋白丝变硬,并抑制 ADP-P(i)肌动蛋白中γ-磷酸的释放。