Galkin Vitold E, Orlova Albina, Vos Matthijn R, Schröder Gunnar F, Egelman Edward H
Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
Structure. 2015 Jan 6;23(1):173-182. doi: 10.1016/j.str.2014.11.006. Epub 2014 Dec 18.
Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.
肌动蛋白以螺旋聚合物F-肌动蛋白的形式发挥作用,但由于该细丝无法结晶以及结构异质性,构建其原子模型的尝试受到了阻碍。我们使用了直接电子探测器、冷冻电子显微镜以及施加在薄膜中肌动蛋白细丝上的力,以4.7埃的分辨率重建细丝的一种状态,这使得构建可靠的F-肌动蛋白伪原子模型成为可能。我们还报告了细丝的另一种状态,其中肌动蛋白原聚体采用在G-肌动蛋白-丝切蛋白复合物晶体结构中观察到的构象,具有开放的ATP结合裂隙。两种结构状态的比较为ATP水解和细丝动力学提供了见解。该原子模型为理解为什么肌动蛋白中每个埋藏的残基都受到强烈的选择压力提供了一个框架。