Philips Research Europe - Aachen, 52066 Aachen, Germany.
Med Image Anal. 2010 Feb;14(1):70-84. doi: 10.1016/j.media.2009.10.004. Epub 2009 Oct 22.
Segmentation of medical images can be achieved with the help of model-based algorithms. Reliable boundary detection is a crucial component to obtain robust and accurate segmentation results and to enable full automation. This is especially important if the anatomy being segmented is too variable to initialize a mean shape model such that all surface regions are close to the desired contours. Several boundary detection algorithms are widely used in the literature. Most use some trained image appearance model to characterize and detect the desired boundaries. Although parameters of the boundary detection can vary over the model surface and are trained on images, their performance (i.e., accuracy and reliability of boundary detection) can only be assessed as an integral part of the entire segmentation algorithm. In particular, assessment of boundary detection cannot be done locally and independently on model parameterization and internal energies controlling geometric model properties. In this paper, we propose a new method for the local assessment of boundary detection called Simulated Search. This method takes any boundary detection function and evaluates its performance for a single model landmark in terms of an estimated geometric boundary detection error. In consequence, boundary detection can be optimized per landmark during model training. We demonstrate the success of the method for cardiac image segmentation. In particular we show that the Simulated Search improves the capture range and the accuracy of the boundary detection compared to a traditional training scheme. We also illustrate how the Simulated Search can be used to identify suitable classes of features when addressing a new segmentation task. Finally, we show that the Simulated Search enables multi-modal heart segmentation using a single algorithmic framework. On computed tomography and magnetic resonance images, average segmentation errors (surface-to-surface distances) for the four chambers and the trunks of the large vessels are in the order of 0.8 mm. For 3D rotational X-ray angiography images of the left atrium and pulmonary veins, the average error is 1.3 mm. In all modalities, the locally optimized boundary detection enables fully automatic segmentation.
医学图像的分割可以借助基于模型的算法来实现。可靠的边界检测是获得稳健和准确分割结果以及实现完全自动化的关键组成部分。如果要分割的解剖结构变化太大,无法初始化均值形状模型,从而使所有表面区域都接近所需轮廓,则尤其如此。在文献中广泛使用了几种边界检测算法。大多数算法都使用一些经过训练的图像外观模型来对期望边界进行特征化和检测。尽管边界检测的参数可以在模型表面上变化并且是在图像上进行训练的,但它们的性能(即边界检测的准确性和可靠性)只能作为整个分割算法的一个组成部分进行评估。特别是,不能对边界检测进行局部评估,也不能独立于模型参数化和控制几何模型属性的内部能量进行评估。在本文中,我们提出了一种称为模拟搜索的新的边界检测局部评估方法。该方法采用任何边界检测函数,并根据估计的几何边界检测误差,针对单个模型地标评估其性能。因此,在模型训练期间可以针对每个地标优化边界检测。我们通过心脏图像分割证明了该方法的成功。特别是,我们表明,与传统的训练方案相比,模拟搜索可以提高边界检测的捕获范围和准确性。我们还说明了如何在解决新的分割任务时使用模拟搜索来识别合适的特征类别。最后,我们表明,模拟搜索可以使用单个算法框架实现多模态心脏分割。在计算机断层扫描和磁共振图像上,四个心室和大血管干的平均分割误差(表面到表面距离)约为 0.8 毫米。对于左心房和肺静脉的 3D 旋转 X 射线血管造影图像,平均误差为 1.3 毫米。在所有模态中,局部优化的边界检测都可以实现全自动分割。