Suppr超能文献

预测药物相关的心脏不良反应——A:建立一个包含药物作用的数据库,并确定影响其发生的因素。

Prediction of drug-related cardiac adverse effects in humans--A: creation of a database of effects and identification of factors affecting their occurrence.

机构信息

U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety (OFAS), 5100 Paint Branch Parkway, College Park, MD 20740, USA.

出版信息

Regul Toxicol Pharmacol. 2010 Apr;56(3):247-75. doi: 10.1016/j.yrtph.2009.11.006. Epub 2009 Nov 22.

Abstract

This is the first of two reports that describes the compilation of a database of drug-related cardiac adverse effects (AEs) that was used to construct quantitative structure-activity relationship (QSAR) models to predict these AEs, to identify properties of pharmaceuticals correlated with the AEs, and to identify plausible mechanisms of action (MOAs) causing the AEs. This database of 396,985 cardiac AE reports was linked to 1632 approved drugs and their chemical structures, 1851 clinical indications (CIs), 997 therapeutic targets (TTs), 432 pharmacological MOAs, and 21,180 affinity coefficients (ACs) for the MOA receptors. AEs were obtained from the Food and Drug Administration's (FDA's) Spontaneous Reporting System (SRS) and Adverse Event Reporting System (AERS) and publicly available medical literature. Drug TTs were obtained from Integrity; drug MOAs and ACs were predicted by BioEpisteme. Significant cardiac AEs and patient exposures were estimated based on the proportional reporting ratios (PRRs) for each drug and each AE endpoint as a percentage of the total AEs. Cardiac AE endpoints were bundled based on toxicological mechanism and concordance of drug-related findings. Results revealed that significant cardiac AEs formed 9 clusters affecting Purkinje nerve fibers (arrhythmia, bradycardia, conduction disorder, electrocardiogram, palpitations, QT prolongation, rate rhythm composite, tachycardia, and Torsades de pointes), and 5 clusters affecting the heart muscle (coronary artery disorders, heart failure, myocardial disorders, myocardial infarction, and valve disorders). Based on the observation that each drug had one TT and up to 9 off-target MOAs, cardiac AEs were highly correlated with drugs affecting cardiovascular and cardioneurological functions and certain MOAs (e.g., alpha- and beta-adeno, dopamine, and hydroxytryptomine receptors).

摘要

这是两部分报告中的第一部分,描述了一个药物相关心脏不良事件(AE)数据库的编制情况,该数据库用于构建定量构效关系(QSAR)模型来预测这些 AE,识别与 AE 相关的药物特性,并确定导致 AE 的合理作用机制(MOA)。该数据库包含 396985 例心脏 AE 报告,与 1632 种已批准药物及其化学结构、1851 种临床适应证(CIs)、997 种治疗靶点(TTs)、432 种药理学 MOA 和 21180 种 MOA 受体亲和力系数(ACs)相关联。AE 从美国食品和药物管理局(FDA)的自发报告系统(SRS)和不良事件报告系统(AERS)以及公开的医学文献中获得。药物 TT 从 Integrity 获得;药物 MOA 和 AC 通过 BioEpisteme 预测。根据每个药物和每个 AE 终点相对于总 AE 的比例报告比值(PRR),估算出显著的心脏 AE 和患者暴露情况。根据毒性作用机制和药物相关发现的一致性,对心脏 AE 终点进行捆绑。结果表明,显著的心脏 AE 形成了 9 个影响浦肯野纤维的簇(心律失常、心动过缓、传导障碍、心电图、心悸、QT 延长、心率节律综合、心动过速和尖端扭转型室性心动过速),以及 5 个影响心肌的簇(冠状动脉疾病、心力衰竭、心肌疾病、心肌梗死和瓣膜疾病)。根据观察到每个药物只有一个 TT 和最多 9 个脱靶 MOA 的情况,心脏 AE 与影响心血管和心脏神经功能的药物以及某些 MOA(例如,α-和β-肾上腺素、多巴胺和羟色胺受体)高度相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验