Suppr超能文献

基于似然比检验的方法,利用美国食品药品监督管理局的不良事件报告系统数据库对药物类别中的信号进行检测。

Likelihood ratio test-based method for signal detection in drug classes using FDA's AERS database.

作者信息

Huang Lan, Zalkikar Jyoti, Tiwari Ram C

机构信息

Office of Biostatistics, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, USA.

出版信息

J Biopharm Stat. 2013;23(1):178-200. doi: 10.1080/10543406.2013.736810.

Abstract

In 1968 the Food and Drug Administration (FDA) established the Adverse Event Reporting System (AERS) database containing data on adverse events (AEs) reported by patients, health care providers, and other sources through a spontaneous reporting system. FDA uses AERS for monitoring the safety of the drugs on the market after approval. Most statistical methods that are available in the literature to analyze large postmarket drug safety data for identifying drug-event combinations with disproportionately high frequencies are designed to explore signals of a single drug-AE combination, but not signals including a drug class or a group of AEs simultaneously. Those methods are also not designed to control type I error and are subject to high false discovery rates. In this paper, we first briefly review a recently developed method, known as the likelihood ratio test (LRT)-based method, which has been demonstrated to control the family-wise type I error and false discovery rates. By introducing a concept of weight matrix for the drugs (or for AEs), we then extend the LRT method for detecting signals including a class of drugs (or AEs) in addition to detecting signals of single drug (or AE). A simplified Bayesian method is also proposed and compared with LRT method. The proposed methods are applied to study the signal patterns of drug classes, namely, the gadolinium drug class for magnetic resonance imaging (MRI) and statins for hypercholesterolemia, over different time periods, using the datasets with only suspect drugs and with both suspect and concomitant drugs from the AERS database. The signals detected by the statistical methods can be confirmed by signals detected across different databases, existing medical evidence from research or regulatory resources, prospective biological studies, and also through simulation as illustrated in the application.

摘要

1968年,美国食品药品监督管理局(FDA)建立了不良事件报告系统(AERS)数据库,该数据库包含患者、医疗保健提供者及其他来源通过自发报告系统上报的不良事件(AE)数据。FDA利用AERS监测已批准上市药物的安全性。文献中现有的大多数用于分析大型上市后药物安全数据以识别频率过高的药物-事件组合的统计方法,都是为了探索单一药物-不良事件组合的信号,而非同时包含药物类别或一组不良事件的信号。这些方法也未设计用于控制I型错误,且存在较高的错误发现率。在本文中,我们首先简要回顾一种最近开发的方法,即基于似然比检验(LRT)的方法,该方法已被证明可控制家族性I型错误和错误发现率。通过引入药物(或不良事件)权重矩阵的概念,我们随后扩展了LRT方法,以除检测单一药物(或不良事件)信号外,还能检测包含一类药物(或不良事件)的信号。我们还提出了一种简化的贝叶斯方法,并将其与LRT方法进行比较。利用AERS数据库中仅包含可疑药物以及同时包含可疑药物和伴随药物的数据集,将所提出的方法应用于研究不同时间段内药物类别的信号模式,即用于磁共振成像(MRI)的钆类药物和用于高胆固醇血症的他汀类药物。统计方法检测到的信号可通过不同数据库检测到的信号、来自研究或监管资源的现有医学证据、前瞻性生物学研究以及应用中所示的模拟进行确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验