Suppr超能文献

分数微分掩模:基于分数微分的多尺度纹理增强方法。

Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement.

机构信息

School of Computer Science andTechnology, Sichuan University, 610065 Chengdu, China.

出版信息

IEEE Trans Image Process. 2010 Feb;19(2):491-511. doi: 10.1109/TIP.2009.2035980. Epub 2009 Nov 24.

Abstract

In this paper, we intend to implement a class of fractional differential masks with high-precision. Thanks to two commonly used definitions of fractional differential for what are known as GrUmwald-Letnikov and Riemann-Liouville, we propose six fractional differential masks and present the structures and parameters of each mask respectively on the direction of negative x-coordinate, positive x-coordinate, negative y-coordinate, positive y-coordinate, left downward diagonal, left upward diagonal, right downward diagonal, and right upward diagonal. Moreover, by theoretical and experimental analyzing, we demonstrate the second is the best performance fractional differential mask of the proposed six ones. Finally, we discuss further the capability of multiscale fractional differential masks for texture enhancement. Experiments show that, for rich-grained digital image, the capability of nonlinearly enhancing complex texture details in smooth area by fractional differential-based approach appears obvious better than by traditional intergral-based algorithms.

摘要

在本文中,我们旨在实现一类具有高精度的分数微分掩模。得益于两种常用的分数微分定义,即 GrUmwald-Letnikov 和 Riemann-Liouville,我们提出了六个分数微分掩模,并分别在负 x 坐标、正 x 坐标、负 y 坐标、正 y 坐标、左向下对角线、左向上对角线、右向下对角线和右向上对角线方向上给出了每个掩模的结构和参数。此外,通过理论和实验分析,我们证明了第二个是所提出的六个分数微分掩模中性能最好的。最后,我们进一步讨论了多尺度分数微分掩模在纹理增强方面的能力。实验表明,对于粗粒度数字图像,基于分数微分的方法在平滑区域中增强复杂纹理细节的非线性能力明显优于基于传统积分的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验