Menke J
Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen, Am Fassberg 1137077 Göttingen, Germany.
Methods Inf Med. 2010;49(1):54-62, 62-4. doi: 10.3414/ME09-01-0001. Epub 2009 Nov 20.
Meta-analysis allows to summarize pooled sensitivities and specificities from several primary diagnostic test accuracy studies. Often these pooled estimates are indirectly obtained from a hierarchical summary receiver operating characteristics (HSROC) analysis. This article presents a generalized linear random-effects model with the new SAS PROC GLIMMIX that obtains the pooled estimates for sensitivity and specificity directly.
Firstly, the formula of the bivariate random-effects model is presented in context with the literature. Then its implementation with the new SAS PROC GLIMMIX is empirically evaluated in comparison to the indirect HSROC approach, utilizing the published 2 x 2 count data of 50 meta-analyses.
According to the empirical evaluation the meta-analytic results from the bivariate GLIMMIX approach are nearly identical to the results from the indirect HSROC approach.
A generalized linear mixed model with PROC GLIMMIX offers a straightforward method for bivariate random-effects meta-analysis of sensitivity and specificity.
荟萃分析能够汇总多项原发性诊断试验准确性研究的合并敏感度和特异度。通常,这些合并估计值是通过分层汇总接受者操作特征(HSROC)分析间接获得的。本文提出了一种广义线性随机效应模型,利用新的SAS PROC GLIMMIX直接获得敏感度和特异度的合并估计值。
首先,结合文献给出二元随机效应模型的公式。然后,与间接HSROC方法相比,利用已发表的50项荟萃分析的2×2计数数据,通过实证评估新的SAS PROC GLIMMIX对其的实现。
根据实证评估,二元GLIMMIX方法的荟萃分析结果与间接HSROC方法的结果几乎相同。
使用PROC GLIMMIX的广义线性混合模型为敏感度和特异度的二元随机效应荟萃分析提供了一种直接的方法。