Suppr超能文献

诊断试验多元荟萃分析的统计方法:概述与教程

Statistical methods for multivariate meta-analysis of diagnostic tests: An overview and tutorial.

作者信息

Ma Xiaoye, Nie Lei, Cole Stephen R, Chu Haitao

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

Division of Biometrics IV, Office of Biometrics/OTS/CDER /FDA, Silver Spring, MD, USA.

出版信息

Stat Methods Med Res. 2016 Aug;25(4):1596-619. doi: 10.1177/0962280213492588. Epub 2013 Jun 26.

Abstract

In this article, we present an overview and tutorial of statistical methods for meta-analysis of diagnostic tests under two scenarios: (1) when the reference test can be considered a gold standard and (2) when the reference test cannot be considered a gold standard. In the first scenario, we first review the conventional summary receiver operating characteristics approach and a bivariate approach using linear mixed models. Both approaches require direct calculations of study-specific sensitivities and specificities. We next discuss the hierarchical summary receiver operating characteristics curve approach for jointly modeling positivity criteria and accuracy parameters, and the bivariate generalized linear mixed models for jointly modeling sensitivities and specificities. We further discuss the trivariate generalized linear mixed models for jointly modeling prevalence, sensitivities and specificities, which allows us to assess the correlations among the three parameters. These approaches are based on the exact binomial distribution and thus do not require an ad hoc continuity correction. Lastly, we discuss a latent class random effects model for meta-analysis of diagnostic tests when the reference test itself is imperfect for the second scenario. A number of case studies with detailed annotated SAS code in MIXED and NLMIXED procedures are presented to facilitate the implementation of these approaches.

摘要

在本文中,我们概述并讲解了两种情况下诊断试验荟萃分析的统计方法:(1)当参考试验可被视为金标准时;(2)当参考试验不能被视为金标准时。在第一种情况下,我们首先回顾传统的汇总接受者操作特征方法和使用线性混合模型的双变量方法。这两种方法都需要直接计算特定研究的敏感性和特异性。接下来,我们讨论用于联合建模阳性标准和准确性参数的分层汇总接受者操作特征曲线方法,以及用于联合建模敏感性和特异性的双变量广义线性混合模型。我们进一步讨论用于联合建模患病率、敏感性和特异性的三变量广义线性混合模型,这使我们能够评估这三个参数之间的相关性。这些方法基于精确的二项分布,因此不需要特别的连续性校正。最后,对于第二种情况,当参考试验本身不完善时,我们讨论用于诊断试验荟萃分析的潜在类别随机效应模型。本文还给出了一些案例研究,并带有MIXED和NLMIXED过程中详细注释的SAS代码,以促进这些方法的实施。

相似文献

1
Statistical methods for multivariate meta-analysis of diagnostic tests: An overview and tutorial.
Stat Methods Med Res. 2016 Aug;25(4):1596-619. doi: 10.1177/0962280213492588. Epub 2013 Jun 26.
2
A unification of models for meta-analysis of diagnostic accuracy studies without a gold standard.
Biometrics. 2015 Jun;71(2):538-47. doi: 10.1111/biom.12264. Epub 2014 Oct 30.
3
Bivariate random effects meta-analysis of ROC curves.
Med Decis Making. 2008 Sep-Oct;28(5):621-38. doi: 10.1177/0272989X08319957. Epub 2008 Jun 30.
4
Bivariate random-effects meta-analysis of sensitivity and specificity with SAS PROC GLIMMIX.
Methods Inf Med. 2010;49(1):54-62, 62-4. doi: 10.3414/ME09-01-0001. Epub 2009 Nov 20.
5
Tutorial: statistical methods for the meta-analysis of diagnostic test accuracy studies.
Clin Chem Lab Med. 2023 Jan 19;61(5):777-794. doi: 10.1515/cclm-2022-1256. Print 2023 Apr 25.
6
Meta-analysis for the comparison of two diagnostic tests to a common gold standard: A generalized linear mixed model approach.
Stat Methods Med Res. 2018 May;27(5):1410-1421. doi: 10.1177/0962280216661587. Epub 2016 Aug 2.
7
Bivariate random effects meta-analysis of diagnostic studies using generalized linear mixed models.
Med Decis Making. 2010 Jul-Aug;30(4):499-508. doi: 10.1177/0272989X09353452. Epub 2009 Dec 3.
10
A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence.
Stat Methods Med Res. 2017 Oct;26(5):2270-2286. doi: 10.1177/0962280215596769. Epub 2015 Aug 11.

引用本文的文献

1
Choice of Link Functions for Generalized Linear Mixed Models in Meta-Analyses of Proportions.
Res Methods Med Health Sci. 2025 Jan;6(1):13-23. doi: 10.1177/26320843231224808. Epub 2023 Dec 27.
8
Empirical comparisons of meta-analysis methods for diagnostic studies: a meta-epidemiological study.
BMJ Open. 2022 May 9;12(5):e055336. doi: 10.1136/bmjopen-2021-055336.
9
Adoption value of vacuum-assisted biopsy in diagnosis and treatment of breast lesions.
Gland Surg. 2022 Apr;11(4):776-777. doi: 10.21037/gs-22-44.
10
Meta-Analysis Methods of Diagnostic Test Accuracy Studies.
Methods Mol Biol. 2022;2345:173-185. doi: 10.1007/978-1-0716-1566-9_11.

本文引用的文献

1
Bayesian meta-analysis of the accuracy of a test for tuberculous pleuritis in the absence of a gold standard reference.
Biometrics. 2012 Dec;68(4):1285-93. doi: 10.1111/j.1541-0420.2012.01773.x. Epub 2012 May 8.
2
Adjusting for partial verification or workup bias in meta-analyses of diagnostic accuracy studies.
Am J Epidemiol. 2012 Apr 15;175(8):847-53. doi: 10.1093/aje/kwr383. Epub 2012 Mar 15.
3
Diagnostic accuracy of ultrasound for rotator cuff tears in adults: a systematic review and meta-analysis.
Clin Radiol. 2011 Nov;66(11):1036-48. doi: 10.1016/j.crad.2011.05.007. Epub 2011 Jul 6.
4
Partial-thickness rotator cuff tears.
Korean J Pain. 2011 Jun;24(2):69-73. doi: 10.3344/kjp.2011.24.2.69. Epub 2011 Jun 3.
5
Assessing the dependence of sensitivity and specificity on prevalence in meta-analysis.
Biostatistics. 2011 Oct;12(4):710-22. doi: 10.1093/biostatistics/kxr008. Epub 2011 Apr 27.
6
Shoulder ultrasonography versus arthroscopy for the detection of rotator cuff tears: analysis of errors.
J Orthop Surg (Hong Kong). 2011 Apr;19(1):76-9. doi: 10.1177/230949901101900118.
7
Bivariate random effects meta-analysis of diagnostic studies using generalized linear mixed models.
Med Decis Making. 2010 Jul-Aug;30(4):499-508. doi: 10.1177/0272989X09353452. Epub 2009 Dec 3.
9
Random Effects Models in a Meta-Analysis of the Accuracy of Two Diagnostic Tests Without a Gold Standard.
J Am Stat Assoc. 2009 Jun 1;104(486):512-523. doi: 10.1198/jasa.2009.0017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验