Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan.
Chemistry. 2010 Jan 4;16(1):354-61. doi: 10.1002/chem.200901163.
The effects of axial ligands on electron-transfer and proton-coupled electron-transfer reactions of mononuclear nonheme oxoiron(IV) complexes were investigated by using Fe(IV)(O)(tmc)(X) (1-X) with various axial ligands, in which tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and X is CH(3)CN (1-NCCH(3)), CF(3)COO(-) (1-OOCCF(3)), or N(3) (-) (1-N(3)), and ferrocene derivatives as electron donors. As the binding strength of the axial ligands increases, the one-electron reduction potentials of 1-X (E(red), V vs. saturated calomel electrode (SCE)) are more negatively shifted by the binding of the more electron-donating axial ligands in the order of 1-NCCH(3) (0.39) > 1-OOCCF(3) (0.13) > 1-N(3) (-0.05 V). Rate constants of electron transfer from ferrocene derivatives to 1-X were analyzed in light of the Marcus theory of electron transfer to determine reorganization energies (lambda) of electron transfer. The lambda values decrease in the order of 1-NCCH(3) (2.37) > 1-OOCCF(3) (2.12) > 1-N(3) (1.97 eV). Thus, the electron-transfer reduction becomes less favorable thermodynamically but more favorable kinetically with increasing donor ability of the axial ligands. The net effect of the axial ligands is the deceleration of the electron-transfer rate in the order of 1-NCCH(3) > 1-OOCCF(3) > 1-N(3). In sharp contrast to this, the rates of the proton-coupled electron-transfer reactions of 1-X are markedly accelerated in the presence of an acid in the opposite order: 1-NCCH(3) < 1-OOCCF(3) < 1-N(3). Such contrasting effects of the axial ligands on the electron-transfer and proton-coupled electron-transfer reactions of nonheme oxoiron(IV) complexes are discussed in light of the counterintuitive reactivity patterns observed in the oxo transfer and hydrogen-atom abstraction reactions by nonheme oxoiron(IV) complexes (Sastri et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19 181-19 186).
单核非血红素氧合铁(IV)配合物中轴向配体对电子转移和质子偶联电子转移反应的影响通过使用具有各种轴向配体的[Fe(IV)(O)(tmc)(X)]n+(1-X)进行研究,其中 tmc 是 1,4,8,11-四甲基-1,4,8,11-四氮杂环十四烷,X 是 CH(3)CN(1-NCCH(3))、CF(3)COO(-)(1-OOCCF(3))或 N(3) (-)(1-N(3)),以及铁衍生物作为电子供体。随着轴向配体结合强度的增加,1-X(E(red),相对于饱和甘汞电极(SCE)的还原电位)通过结合更具供电子能力的轴向配体更负移,顺序为 1-NCCH(3)(0.39)> 1-OOCCF(3)(0.13)> 1-N(3)(-0.05 V)。从铁衍生物到 1-X 的电子转移的速率常数根据电子转移到 Marcus 理论进行了分析,以确定电子转移的重组能(lambda)。lambda 值按 1-NCCH(3)(2.37)> 1-OOCCF(3)(2.12)> 1-N(3)(1.97 eV)的顺序降低。因此,随着轴向配体给体能力的增加,电子转移热力学上变得不利,但动力学上更有利。轴向配体的净效应是按 1-NCCH(3) > 1-OOCCF(3) > 1-N(3)的顺序减慢电子转移速率。与此形成鲜明对比的是,在酸存在下,1-X 的质子偶联电子转移反应的速率明显加快,顺序相反:1-NCCH(3)<1-OOCCF(3)<1-N(3)。非血红素氧合铁(IV)配合物的电子转移和质子偶联电子转移反应中轴向配体的这种相反的影响,根据非血红素氧合铁(IV)配合物的氧转移和氢原子提取反应中观察到的违反直觉的反应模式进行了讨论(Sastri 等人,Proc。Natl。美国科学院。科学。2007, 104, 19 181-19 186)。