Guo Mian, Corona Teresa, Ray Kallol, Nam Wonwoo
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
ACS Cent Sci. 2019 Jan 23;5(1):13-28. doi: 10.1021/acscentsci.8b00698. Epub 2018 Dec 18.
Utilization of O as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic catalytic oxidation systems. Metalloenzymes activate O by employing earth-abundant metals and exhibit diverse reactivities in oxidation reactions, including epoxidation of olefins, functionalization of alkane C-H bonds, arene hydroxylation, and -dihydroxylation of arenes. Metal-oxo species are proposed as reactive intermediates in these reactions. A number of biomimetic metal-oxo complexes have been synthesized in recent years by activating O or using artificial oxidants at iron and manganese centers supported on heme or nonheme-type ligand environments. Detailed reactivity studies together with spectroscopy and theory have helped us understand how the reactivities of these metal-oxygen intermediates are controlled by the electronic and steric properties of the metal centers. These studies have provided important insights into biological reactions, which have contributed to the design of biologically inspired oxidation catalysts containing earth-abundant metals like iron and manganese. In this Outlook article, we survey a few examples of these advances with particular emphasis in each case on the interplay of catalyst design and our understanding of metalloenzyme structure and function.
在设计受生物启发的合成催化氧化体系时,将氧气作为一种丰富且环境友好的氧化剂加以利用备受关注。金属酶通过使用地球上储量丰富的金属来活化氧气,并在氧化反应中展现出多样的反应活性,包括烯烃的环氧化、烷烃碳氢键的官能团化、芳烃的羟基化以及芳烃的双羟基化。金属氧物种被认为是这些反应中的活性中间体。近年来,通过在血红素或非血红素型配体环境支撑的铁和锰中心活化氧气或使用人工氧化剂,已经合成了许多仿生金属氧配合物。详细的反应活性研究以及光谱学和理论研究帮助我们理解了这些金属 - 氧中间体的反应活性是如何受金属中心的电子和空间性质控制的。这些研究为生物反应提供了重要的见解,有助于设计含有铁和锰等地球上储量丰富的金属的受生物启发的氧化催化剂。在这篇展望文章中,我们审视了这些进展中的一些例子,每种情况都特别强调了催化剂设计与我们对金属酶结构和功能的理解之间的相互作用。