Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
J Neurosci Res. 2010 May 1;88(6):1317-28. doi: 10.1002/jnr.22295.
Delayed calcium deregulation (DCD) plays an essential role in glutamate excitotoxicity, a major detrimental factor in stroke, traumatic brain injury, and various neurodegenerations. In the present study, we examined the role of calpain activation and Na(+)/Ca(2+) exchanger (NCX) degradation in DCD and excitotoxic cell death in cultured hippocampal neurons. Exposure of neurons to glutamate caused DCD accompanied by secondary mitochondrial depolarization. Activation of calpain was evidenced by detecting NCX isoform 3 (NCX3) degradation products. Degradation of NCX isoform 1 (NCX1) was below the detection limit of Western blotting. Degradation of NCX3 was detected only after 1 hr of incubation with glutamate, whereas DCD occurred on average within 15 min after glutamate application. Calpeptin, an inhibitor of calpain, significantly attenuated NCX3 degradation but failed to inhibit DCD and excitotoxic neuronal death. Calpain inhibitors I, III, and VI also failed to influence DCD and glutamate-induced neuronal death. On the other hand, MK801, an inhibitor of the NMDA subtype of glutamate receptors, added shortly after the initial glutamate-induced jump in cytosolic Ca(2+), completely prevented DCD and activation of calpain and strongly protected neurons against excitotoxicity. Taken together, our results suggest that, in glutamate-treated hippocampal neurons, the initial increase in cytosolic Ca(2+) that precedes DCD is insufficient for sustained calpain activation, which most likely occurs downstream of DCD.
延迟钙调控失常(DCD)在谷氨酸兴奋性毒性中起着至关重要的作用,谷氨酸兴奋性毒性是中风、创伤性脑损伤和各种神经退行性疾病的一个主要有害因素。在本研究中,我们研究了钙蛋白酶激活和 Na(+)/Ca(2+) 交换体(NCX)降解在 DCD 中的作用以及培养的海马神经元中的兴奋性细胞死亡。神经元暴露于谷氨酸会导致 DCD 伴随后续的线粒体去极化。钙蛋白酶的激活通过检测 NCX 同工型 3(NCX3)降解产物来证明。NCX 同工型 1(NCX1)的降解低于 Western blot 的检测下限。仅在与谷氨酸孵育 1 小时后才检测到 NCX3 降解,而 DCD 在谷氨酸应用后平均在 15 分钟内发生。钙蛋白酶抑制剂 calpeptin 显著减弱了 NCX3 的降解,但未能抑制 DCD 和兴奋性神经元死亡。钙蛋白酶抑制剂 I、III 和 VI 也未能影响 DCD 和谷氨酸诱导的神经元死亡。另一方面,MK801,一种 NMDA 型谷氨酸受体抑制剂,在初始谷氨酸诱导的细胞浆 Ca(2+) 跃升后不久添加,完全阻止了 DCD 和钙蛋白酶的激活,并强烈保护神经元免受兴奋性毒性。总之,我们的结果表明,在谷氨酸处理的海马神经元中,在 DCD 之前发生的细胞浆 Ca(2+) 的初始增加不足以维持钙蛋白酶的激活,钙蛋白酶的激活很可能发生在 DCD 之后。