Suppr超能文献

预测 ADME 中配体与 ABC 转运蛋白的相互作用。

Predicting ligand interactions with ABC transporters in ADME.

机构信息

University of Vienna, Department of Medicinal Chemistry, Emerging Field Pharmacoinformatics, Althanstrasse 14, AT-1090 Vienna.

出版信息

Chem Biodivers. 2009 Nov;6(11):1960-9. doi: 10.1002/cbdv.200900138.

Abstract

ABC-type drug efflux pumps, e.g., ABCB1 (=P-glycoprotein, =MDR1), ABCC1 (=MRP1), and ABCG2 (=MXR, =BCRP), confer a multi-drug resistance (MDR) phenotype to cancer cells. Furthermore, the important contribution of ABC transporters for bioavailability, distribution, elimination, and blood-brain barrier permeation of drug candidates is increasingly recognized. This review presents an overview on the different computational methods and models pursued to predict ABC transporter substrate properties of drug-like compounds. They encompass ligand-based approaches ranging from 'simple rule'-based efforts to sophisticated machine learning methods. Many of these models show excellent performance for the data sets used. However, due to the complex nature of the applied methods, useful interpretation of the models that can be directly translated into chemical structures by the medicinal chemist is rather difficult. Additionally, very recent and promising attempts in the field of structure-based modeling of ABC transporters, which embody homology modeling as well as recently published X-ray structures of murine ABCB1, will be discussed.

摘要

ABC 型药物外排泵,例如 ABCB1(=P-糖蛋白,=MDR1)、ABCC1(=MRP1)和 ABCG2(=MXR,=BCRP),使癌细胞具有多药耐药(MDR)表型。此外,越来越多的人认识到 ABC 转运蛋白对候选药物的生物利用度、分布、消除和血脑屏障通透性的重要贡献。本综述介绍了用于预测类药化合物 ABC 转运体底物特性的不同计算方法和模型。它们包括基于配体的方法,范围从基于“简单规则”的努力到复杂的机器学习方法。许多这些模型在使用的数据集中表现出出色的性能。然而,由于所应用方法的复杂性,对于可以由药物化学家直接转化为化学结构的模型进行有用的解释相当困难。此外,还将讨论 ABC 转运体结构建模领域中最近的、有前途的尝试,这些尝试包括同源建模以及最近发表的鼠源 ABCB1 的 X 射线结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验