Suppr超能文献

脂质双层调节膜蛋白功能:短杆菌肽通道作为分子力探针。

Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

J R Soc Interface. 2010 Mar 6;7(44):373-95. doi: 10.1098/rsif.2009.0443. Epub 2009 Nov 25.

Abstract

Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids, other lipid metabolites and amphiphiles) regulate a wide range of membrane proteins in a seemingly non-specific manner. The commonality of the changes in protein function suggests an underlying physical mechanism, and recent studies show that at least some of the changes are caused by altered bilayer physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli.

摘要

膜蛋白的功能受宿主脂质双层组成的调节。这种调节可能取决于蛋白质与双层中单个分子之间的特定化学相互作用,以及蛋白质与作为具有集体物理性质(例如厚度、固有单层曲率或弹性模量)的物理实体的双层之间的非特异性相互作用。物理化学模型系统的研究表明,通过改变与蛋白质构象变化相关的双层变形的能量成本,双层物理性质的变化可以调节膜蛋白的功能。这种类型的调节已经得到很好的描述,其机制阐明是一个涉及物理、化学和生物学的跨学科领域。改变脂质组成以改变双层物理性质(包括胆固醇、多不饱和脂肪酸、其他脂质代谢物和两亲物)以非特异性方式调节广泛的膜蛋白。蛋白质功能变化的共性表明存在潜在的物理机制,最近的研究表明,至少一些变化是由双层物理性质的改变引起的。这一进展是由于引入了研究脂质双层调节蛋白质功能的新工具。本综述介绍了双层物理性质对膜蛋白功能的调节。我们进一步描述了使用短杆菌肽通道作为研究这种机制的分子力探针,具有区分单层曲率和双层弹性模量变化后果的独特能力。

相似文献

1
Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.
J R Soc Interface. 2010 Mar 6;7(44):373-95. doi: 10.1098/rsif.2009.0443. Epub 2009 Nov 25.
2
Amphiphile regulation of ion channel function by changes in the bilayer spring constant.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15427-30. doi: 10.1073/pnas.1007455107. Epub 2010 Aug 16.
4
Single-molecule methods for monitoring changes in bilayer elastic properties.
Methods Mol Biol. 2007;400:543-70. doi: 10.1007/978-1-59745-519-0_37.
5
Bilayer thickness and membrane protein function: an energetic perspective.
Annu Rev Biophys Biomol Struct. 2007;36:107-30. doi: 10.1146/annurev.biophys.36.040306.132643.
6
A one-dimensional continuum elastic model for membrane-embedded gramicidin dimer dissociation.
PLoS One. 2011 Feb 4;6(2):e15563. doi: 10.1371/journal.pone.0015563.
9
Screening for small molecules' bilayer-modifying potential using a gramicidin-based fluorescence assay.
Assay Drug Dev Technol. 2010 Aug;8(4):427-36. doi: 10.1089/adt.2009.0250.

引用本文的文献

1
Examining changes in gramicidin current induced by endocannabinoids.
PLoS One. 2025 Aug 18;20(8):e0313903. doi: 10.1371/journal.pone.0313903. eCollection 2025.
2
Targeted elimination of mesenchymal-like cancer cells through cyclic stretch activation of Piezo1 channels: the physical aspects.
Biophys Rev. 2025 Mar 19;17(3):847-865. doi: 10.1007/s12551-025-01304-y. eCollection 2025 Jun.
3
Global and local effects in lipid-mediated interactions between peripheral and integral membrane proteins.
Front Mol Biosci. 2025 May 30;12:1605772. doi: 10.3389/fmolb.2025.1605772. eCollection 2025.
4
Capsaicin: beyond TRPV1.
Front Nutr. 2025 May 29;12:1594742. doi: 10.3389/fnut.2025.1594742. eCollection 2025.
5
Mechanotransduction in Development: A Focus on Angiogenesis.
Biology (Basel). 2025 Mar 27;14(4):346. doi: 10.3390/biology14040346.
6
Mechanical Stimulation of Red Blood Cells Aging: Focusing on the Microfluidics Application.
Micromachines (Basel). 2025 Feb 25;16(3):259. doi: 10.3390/mi16030259.
7
Gramicidin A in Asymmetric Lipid Membranes.
Biomolecules. 2024 Dec 20;14(12):1642. doi: 10.3390/biom14121642.
8
A Collection of Useful Nuisance Compounds (CONS) for Interrogation of Bioassay Integrity.
JACS Au. 2024 Nov 25;4(12):4883-4891. doi: 10.1021/jacsau.4c00851. eCollection 2024 Dec 23.
9
A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs.
Nat Methods. 2025 Feb;22(2):412-421. doi: 10.1038/s41592-024-02517-x. Epub 2024 Nov 28.

本文引用的文献

2
Emerging roles for lipids in shaping membrane-protein function.
Nature. 2009 May 21;459(7245):379-85. doi: 10.1038/nature08147.
5
Crystal structure of full-length KcsA in its closed conformation.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6644-9. doi: 10.1073/pnas.0810663106. Epub 2009 Apr 3.
6
Structure of the connexin 26 gap junction channel at 3.5 A resolution.
Nature. 2009 Apr 2;458(7238):597-602. doi: 10.1038/nature07869.
7
Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.
Science. 2009 Mar 27;323(5922):1718-22. doi: 10.1126/science.1168750.
9
Alternating access in maltose transporter mediated by rigid-body rotations.
Mol Cell. 2009 Feb 27;33(4):528-36. doi: 10.1016/j.molcel.2009.01.035.
10
Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB.
EMBO J. 2009 Mar 18;28(6):779-91. doi: 10.1038/emboj.2009.21. Epub 2009 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验