Suppr超能文献

原核生物亮氨酰-tRNA 合成酶依赖 tRNA 的转移前编辑。

tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase.

机构信息

State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

J Biol Chem. 2010 Jan 29;285(5):3235-44. doi: 10.1074/jbc.M109.060616. Epub 2009 Nov 23.

Abstract

To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNA(Leu) in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing.

摘要

为了防止由于氨基酸错误掺入蛋白质而导致遗传密码模糊,氨酰-tRNA 合成酶已进化出编辑活性,以消除中间或最终的非同源产物。在这项工作中,我们研究了类 I 亮氨酰-tRNA 合成酶(LeuRS)的不同编辑途径。使用不同的突变和实验条件来破译编辑机制,包括最近开发的靶向 LeuRS 转移后编辑位点的化合物 AN2690。该研究强调了 tRNA 对转移前和转移后编辑催化的至关重要性。尽管大肠杆菌酶有利于转移后编辑,而 A.aeolicus 酶有利于转移前编辑,但两种反应在原核 Aquifex aeolicus 和 Escherichia coli LeuRS 中都具有相当的效率。我们的结果还表明,tRNA 的 CCA-受体末端进入编辑结构域是 tRNA 依赖性转移前编辑所必需的。令人惊讶的是,这种编辑反应对 AN2690 具有抗性,AN2690 通过与转移后编辑位点的 tRNA(Leu)形成共价加合物而使酶失活。总之,这些数据表明,tRNA 在转移后编辑构象中的结合赋予了酶进行转移前编辑催化的能力,而与其进行转移后编辑催化的能力无关。

相似文献

1
tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase.
J Biol Chem. 2010 Jan 29;285(5):3235-44. doi: 10.1074/jbc.M109.060616. Epub 2009 Nov 23.
2
The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation.
Nucleic Acids Res. 2013 May 1;41(10):5513-23. doi: 10.1093/nar/gkt252. Epub 2013 Apr 12.
5
Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
J Mol Biol. 2018 Jan 5;430(1):1-16. doi: 10.1016/j.jmb.2017.10.024. Epub 2017 Oct 27.
9
Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.
J Biol Chem. 2004 Jul 30;279(31):32151-8. doi: 10.1074/jbc.M403018200. Epub 2004 May 25.
10
Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
J Biol Chem. 2015 Oct 2;290(40):24391-402. doi: 10.1074/jbc.M115.672824. Epub 2015 Aug 13.

引用本文的文献

1
The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase.
Nucleic Acids Res. 2019 Apr 8;47(6):3072-3085. doi: 10.1093/nar/gkz078.
4
Acetylation of lysine ϵ-amino groups regulates aminoacyl-tRNA synthetase activity in .
J Biol Chem. 2017 Jun 23;292(25):10709-10722. doi: 10.1074/jbc.M116.770826. Epub 2017 Apr 28.
5
Translational Quality Control by Bacterial Threonyl-tRNA Synthetases.
J Biol Chem. 2016 Sep 30;291(40):21208-21221. doi: 10.1074/jbc.M116.740472. Epub 2016 Aug 19.
7
Multiple Quality Control Pathways Limit Non-protein Amino Acid Use by Yeast Cytoplasmic Phenylalanyl-tRNA Synthetase.
J Biol Chem. 2016 Jul 22;291(30):15796-805. doi: 10.1074/jbc.M116.726828. Epub 2016 May 19.
8
Aminoacyl-tRNA Synthetases in the Bacterial World.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.
9
Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
J Biol Chem. 2015 Oct 2;290(40):24391-402. doi: 10.1074/jbc.M115.672824. Epub 2015 Aug 13.
10
Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
J Biol Chem. 2015 May 8;290(19):12256-67. doi: 10.1074/jbc.M115.639492. Epub 2015 Mar 27.

本文引用的文献

1
A glycine hinge for tRNA-dependent translocation of editing substrates to prevent errors by leucyl-tRNA synthetase.
FEBS Lett. 2009 Nov 3;583(21):3443-7. doi: 10.1016/j.febslet.2009.09.039. Epub 2009 Sep 29.
3
Aminoacyl-tRNA synthesis and translational quality control.
Annu Rev Microbiol. 2009;63:61-78. doi: 10.1146/annurev.micro.091208.073210.
4
tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase.
J Biol Chem. 2009 Feb 6;284(6):3418-24. doi: 10.1074/jbc.M806717200. Epub 2008 Dec 9.
5
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19223-8. doi: 10.1073/pnas.0809336105. Epub 2008 Nov 19.
7
Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases.
Methods. 2008 Feb;44(2):100-18. doi: 10.1016/j.ymeth.2007.09.007.
8
Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain.
FEBS Lett. 2007 Oct 30;581(26):5110-4. doi: 10.1016/j.febslet.2007.09.058. Epub 2007 Oct 4.
9
An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site.
Science. 2007 Jun 22;316(5832):1759-61. doi: 10.1126/science.1142189.
10
Global effects of mistranslation from an editing defect in mammalian cells.
Chem Biol. 2006 Oct;13(10):1091-100. doi: 10.1016/j.chembiol.2006.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验