Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
J Neurosci. 2009 Nov 25;29(47):14741-51. doi: 10.1523/JNEUROSCI.3728-09.2009.
Alzheimer's disease (AD) is characterized by memory impairment, neurochemically by accumulation of beta-amyloid peptide (namely Abeta(1-42)) and morphologically by an initial loss of nerve terminals. Caffeine consumption prevents memory dysfunction in different models, which is mimicked by antagonists of adenosine A(2A) receptors (A(2A)Rs), which are located in synapses. Thus, we now tested whether A(2A)R blockade prevents the early Abeta(1-42)-induced synaptotoxicity and memory dysfunction and what are the underlying signaling pathways. The intracerebral administration of soluble Abeta(1-42) (2 nmol) in rats or mice caused, 2 weeks later, memory impairment (decreased performance in the Y-maze and object recognition tests) and a loss of nerve terminal markers (synaptophysin, SNAP-25) without overt neuronal loss, astrogliosis, or microgliosis. These were prevented by pharmacological blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261); 0.05 mg . kg(-1) . d(-1), i.p.; for 15 d] in rats, and genetic inactivation of A(2A)Rs in mice. Moreover, these were synaptic events since purified nerve terminals acutely exposed to Abeta(1-42) (500 nm) displayed mitochondrial dysfunction, which was prevented by A(2A)R blockade. SCH58261 (50 nm) also prevented the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immunoreactivity) and subsequent loss of viability of cultured hippocampal neurons exposed to Abeta(1-42) (500 nm). This A(2A)R-mediated control of neurotoxicity involved the control of Abeta(1-42)-induced p38 phosphorylation and was independent from cAMP/PKA (protein kinase A) pathway. Together, these results show that A(2A)Rs play a crucial role in the development of Abeta-induced synaptotoxicity leading to memory dysfunction through a p38 MAPK (mitogen-activated protein kinase)-dependent pathway and provide a molecular basis for the benefits of caffeine consumption in AD.
阿尔茨海默病(AD)的特征是记忆障碍,在神经化学上表现为β-淀粉样肽(即 Abeta(1-42))的积累,在形态上表现为神经末梢的初始丢失。咖啡因消耗可预防不同模型中的记忆功能障碍,而腺苷 A(2A)受体(A(2A)R)拮抗剂则可模拟这种情况,这些受体位于突触中。因此,我们现在测试 A(2A)R 阻断是否可以预防早期 Abeta(1-42)诱导的突触毒性和记忆功能障碍,以及潜在的信号通路是什么。在大鼠或小鼠脑内给予可溶性 Abeta(1-42)(2 nmol),2 周后会导致记忆障碍(Y 迷宫和物体识别测试中的表现下降)和神经末梢标志物(突触小体素、SNAP-25)丢失,而没有明显的神经元丢失、星形胶质细胞增生或小胶质细胞增生。这些都可以通过药理学阻断[5-氨基-7-(2-苯乙基)-2-(2-呋喃基)-吡唑并[4,3-e]-1,2,4-三唑并[1,5-c]嘧啶(SCH58261);0.05 mg. kg(-1). d(-1),i.p.;15 天]在大鼠中得到预防,并且在小鼠中通过 A(2A)R 基因失活得到预防。此外,这些都是突触事件,因为急性暴露于 Abeta(1-42)(500nm)的纯化神经末梢会出现线粒体功能障碍,而 A(2A)R 阻断可以预防这种功能障碍。SCH58261(50nm)还可以预防培养的海马神经元暴露于 Abeta(1-42)(500nm)后最初的突触毒性(MAP-2、突触小体素和 SNAP-25 免疫反应性丢失)和随后的存活能力丧失。这种 A(2A)R 介导的神经毒性控制涉及 Abeta(1-42)诱导的 p38 磷酸化的控制,并且与 cAMP/PKA(蛋白激酶 A)途径无关。综上所述,这些结果表明 A(2A)R 在 Abeta 诱导的突触毒性的发展中起关键作用,导致记忆功能障碍,其途径是通过 p38 MAPK(丝裂原活化蛋白激酶)依赖性途径,为咖啡因消耗在 AD 中的益处提供了分子基础。