Nanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Tokyo 135-0064, Japan.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21051-6. doi: 10.1073/pnas.0905655106. Epub 2009 Nov 25.
Despite a large steric bulk of C(60), a molecular graphene with a covalently linked C(60) pendant [hexabenzocoronene (HBC)-C(60); 1] self-assembles into a coaxial nanotube whose wall consists of a graphite-like pi-stacked HBC array, whereas the nanotube surface is fully covered by a molecular layer of clustering C(60). Because of this explicit coaxial configuration, the nanotube exhibits an ambipolar character in the field-effect transistor output [hole mobility (micro(h)) = 9.7 x 10(-7) cm(2) V(-1) s(-1); electron mobility (micro(e)) = 1.1 x 10(-5) cm(2) V(-1) s(-1)] and displays a photovoltaic response upon light illumination. Successful coassembly of 1 and an HBC derivative without C(60) (2) allows for tailoring the p/n heterojunction in the nanotube, so that its ambipolar carrier transport property can be optimized for enhancing the open-circuit voltage in the photovoltaic output. As evaluated by an electrodeless method called flash-photolysis time-resolved microwave conductivity technique, the intratubular hole mobility (2.0 cm(2) V(-1) s(-1)) of a coassembled nanotube containing 10 mol % of HBC-C(60) (1) is as large as the intersheet mobility in graphite. The homotropic nanotube of 2 blended with a soluble C(60) derivative [(6,6)-phenyl C(61) butyric acid methyl ester] displayed a photovoltaic response with a much different composition dependency, where the largest open-circuit voltage attained was obviously lower than that realized by the coassembly of 1 and 2.
尽管 C(60) 的空间位阻很大,但通过共价键连接的 C(60) 侧链[六苯并蔻烯(HBC)-C(60);1]自组装成同轴纳米管,其壁由石墨状的 π 堆积 HBC 阵列组成,而纳米管表面完全被聚类 C(60)的分子层覆盖。由于这种明确的同轴结构,该纳米管在场效应晶体管输出中表现出双极性特性[空穴迁移率(微(h))= 9.7 x 10(-7) cm(2) V(-1) s(-1);电子迁移率(微(e))= 1.1 x 10(-5) cm(2) V(-1) s(-1)],并在光照下显示出光伏响应。1 和没有 C(60)的 HBC 衍生物 2 的成功共组装允许在纳米管中定制 p/n 异质结,从而可以优化其双极性载流子输运特性,以提高光伏输出中的开路电压。通过称为无电极闪光光解时间分辨微波电导率技术的方法评估,包含 10 mol % HBC-C(60)(1)的共组装纳米管的管内空穴迁移率(2.0 cm(2) V(-1) s(-1))与石墨中的层间迁移率一样大。与可溶性 C(60)衍生物[(6,6)-苯基 C(61)丁酸甲酯]混合的同型纳米管显示出具有明显不同组成依赖性的光伏响应,其中达到的最大开路电压明显低于通过 1 和 2 的共组装实现的开路电压。