Haipt F, Kirsch M, Hosten N
Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsklinikum Greifswald der Ernst-Moritz-Arndt-Universität, Germany.
Rofo. 2010 Jun;182(6):512-7. doi: 10.1055/s-0028-1109877. Epub 2009 Nov 25.
The use of a moveable leaden radiation protection barrier for additional dose reduction for the physician during CT-fluoroscopy-guided intervention was evaluated.
A Monte-Carlo simulation was first performed to evaluate the chance of dose reduction by a leaden barrier qualitatively. Dose measurements with an Alderson phantom and an ionization chamber were then made to detect the dose rates with and without a lead plate at the patient to reduce the scattered radiation. Later, dose measurements with and without the radiation protection barrier were performed.
A lead plate at the patient to reduce the scattered radiation caused dose reduction (mean shielding coefficient 3.3; median 3.3; standard deviation 1.1 / mean dose reduction 67 %, median 69 %, standard deviation 10 %). In addition to this, the use of a leaden radiation protection barrier caused an even greater dose reduction (mean shielding coefficient 10.9; median 7.7; standard deviation 8.7 / mean dose reduction 84 %, median 86 %, standard deviation 11 %).
Besides already known possibilities of dose reduction (X-ray protective clothing, lead plate, instrument settings, computer-controlled navigation systems, needle holder etc.), the installation of a leaden radiation protection barrier can reduce the radiation exposure of person during CT-fluoroscopy-guided interventions.
评估在CT透视引导介入过程中使用可移动铅质辐射防护屏障为医生进一步降低剂量的效果。
首先进行蒙特卡洛模拟,定性评估铅质屏障降低剂量的可能性。然后使用Alderson体模和电离室进行剂量测量,以检测在患者处有无铅板时的剂量率,从而减少散射辐射。随后,进行有无辐射防护屏障时的剂量测量。
在患者处放置铅板以减少散射辐射可降低剂量(平均屏蔽系数3.3;中位数3.3;标准差1.1 /平均剂量降低67%,中位数69%,标准差10%)。除此之外,使用铅质辐射防护屏障可使剂量进一步大幅降低(平均屏蔽系数10.9;中位数7.7;标准差8.7 /平均剂量降低84%,中位数86%,标准差11%)。
除了已知的降低剂量的方法(X射线防护服、铅板、仪器设置、计算机控制导航系统、持针器等)外,安装铅质辐射防护屏障可在CT透视引导介入过程中降低人员的辐射暴露。