Suppr超能文献

三维多滞差互相关和散斑亮度像差校正算法在静态和动态目标上的比较。

Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.

机构信息

Biomed. Eng. Dept., Duke Univ., Durham, NC, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2157-66. doi: 10.1109/TUFFC.2009.1298.

Abstract

Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.

摘要

相位校正有可能提高 3-D 超声(尤其是经颅超声)的图像质量。我们使用静态和动态目标实现并比较了两种像差校正算法,即多步延迟互相关和散斑亮度。我们校正了三个 rms 电子像差,其半最大值全宽(FWHM)自相关长度分别为 1.35、2.7 和 5.4mm。在 2.7 和 5.4mm 的相关长度下,互相关被证明是更好的算法(P<0.05)。在 2.7mm 的相关长度下,静态互相关的性能优于动态目标互相关(P<0.05)。最后,我们在带有颅骨铸造像差的流动体模上比较了静态和动态目标互相关。使用静态目标的信号进行校正,与使用动态目标的信号相比,平均对比度增加了 22.2%。使用静态和动态目标时,对比度噪声比(CNR)分别增加了 20.5%和 12.8%。多普勒信号强度分别增加了 5.6%和 4.9%。

相似文献

1
Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2157-66. doi: 10.1109/TUFFC.2009.1298.
2
Phase-aberration correction with a 3-D ultrasound scanner: feasibility study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1432-9. doi: 10.1109/tuffc.2006.1665100.
3
Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):463-80. doi: 10.1109/TUFFC.2013.2590.
4
Synergistic enhancements of ultrasound image contrast with a combination of phase aberration correction and dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):2089-101. doi: 10.1109/TUFFC.2012.2430.
5
Transcranial ultrafast ultrasound Doppler imaging: A phantom study.
Ultrasonics. 2024 Dec;144:107430. doi: 10.1016/j.ultras.2024.107430. Epub 2024 Aug 10.
6
Evaluating the robustness of dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):291-303. doi: 10.1109/TUFFC.2009.1038.
7
Harmonic source wavefront aberration correction for ultrasound imaging.
J Acoust Soc Am. 2011 Jan;129(1):507-17. doi: 10.1121/1.3518771.
10
Effects of phase aberration correction methods on the minimum variance beamformer.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3231-3234. doi: 10.1109/EMBC.2016.7591417.

引用本文的文献

1
Local Sound Speed Estimation for Pulse-Echo Ultrasound in Layered Media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):500-511. doi: 10.1109/TUFFC.2021.3124479. Epub 2022 Jan 27.
2
Phase Modulation Beamforming for Ultrafast Plane-Wave Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):2003-2011. doi: 10.1109/TUFFC.2020.2993763. Epub 2020 May 11.
4
Efficient Strategies for Estimating the Spatial Coherence of Backscatter.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Mar;64(3):500-513. doi: 10.1109/TUFFC.2016.2634004. Epub 2016 Dec 1.
5
Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1113-22. doi: 10.1109/TUFFC.2014.3011.
6
Refraction correction in 3D transcranial ultrasound imaging.
Ultrason Imaging. 2014 Jan;36(1):35-54. doi: 10.1177/0161734613510287.
8
Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):463-80. doi: 10.1109/TUFFC.2013.2590.
9
Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.
Ultrasound Med Biol. 2013 Apr;39(4):721-34. doi: 10.1016/j.ultrasmedbio.2012.11.019. Epub 2013 Feb 13.
10
The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1189-202. doi: 10.1109/TUFFC.2011.1929.

本文引用的文献

1
Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction.
Ultrasound Med Biol. 2008 Sep;34(9):1387-95. doi: 10.1016/j.ultrasmedbio.2008.01.015. Epub 2008 Apr 18.
2
Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(6):758-67. doi: 10.1109/58.9333.
3
Time reversal of ultrasonic fields. I. Basic principles.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):555-66. doi: 10.1109/58.156174.
4
High-speed ultrasound volumetric imaging system. II. Parallel processing and image display.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):109-15. doi: 10.1109/58.68467.
5
High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):100-8. doi: 10.1109/58.68466.
6
Parallel processing techniques for the speckle brightness phase aberration correction algorithm.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):431-44. doi: 10.1109/58.585128.
7
Phase-aberration correction with a 3-D ultrasound scanner: feasibility study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1432-9. doi: 10.1109/tuffc.2006.1665100.
8
Spatial and temporal aberrator stability for real-time adaptive imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1504-17. doi: 10.1109/tuffc.2005.1516023.
9
Feasibility study: real-time 3-D ultrasound imaging of the brain.
Ultrasound Med Biol. 2004 Oct;30(10):1365-71. doi: 10.1016/j.ultrasmedbio.2004.08.012.
10
Enhanced ultrasound transmission through the human skull using shear mode conversion.
J Acoust Soc Am. 2004 Mar;115(3):1356-64. doi: 10.1121/1.1645610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验