Suppr超能文献

矩阵阵列上的短延迟空间相干成像,第二部分:体模和体内实验。

Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments.

作者信息

Jakovljevic Marko, Byram Brett C, Hyun Dongwoon, Dahl Jeremy J, Trahey Gregg E

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1113-22. doi: 10.1109/TUFFC.2014.3011.

Abstract

In Part I of the paper, we demonstrated through simulation the potential of volumetric short-lag spatial coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched Bmode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared with their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and contrast-to-noise ratio (CNR) calculations. SLSC volumes show higher CNR values than their matched B-mode volumes, while the contrast values appear to be similar between the two imaging methods.

摘要

在本文的第一部分,我们通过模拟展示了容积短延迟空间相干(SLSC)成像在改善三维低回声目标可视化方面的潜力。在此,我们展示了容积SLSC成像在体模和体内实验中的应用,使用的是临床三维超声扫描仪和矩阵阵列。我们使用定制的单通道采集工具,从全采样矩阵阵列中高速采集部分波束形成的通道数据,并创建了血管体模和体内肝脏血管系统的匹配B模式和SLSC容积。与B模式图像相比,从SLSC容积渲染的二维和三维图像显示出杂波减少,血管的可见性提高。我们同时采集彩色多普勒容积,以确认感兴趣血管的存在,并定义用于对比度和对比噪声比(CNR)计算的血管内部区域。SLSC容积显示出比其匹配的B模式容积更高的CNR值,而两种成像方法之间的对比度值似乎相似。

相似文献

1
Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1113-22. doi: 10.1109/TUFFC.2014.3011.
2
Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1101-12. doi: 10.1109/TUFFC.2014.3010.
3
Robust Short-Lag Spatial Coherence Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):366-377. doi: 10.1109/TUFFC.2017.2780084.
4
Synthetic aperture focusing for short-lag spatial coherence imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Sep;60(9):1816-26. doi: 10.1109/TUFFC.2013.2768.
5
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.
6
Short-lag spatial coherence imaging of cardiac ultrasound data: initial clinical results.
Ultrasound Med Biol. 2013 Oct;39(10):1861-74. doi: 10.1016/j.ultrasmedbio.2013.03.029. Epub 2013 Aug 9.
7
Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
Ultrason Imaging. 2011 Apr;33(2):119-33. doi: 10.1177/016173461103300203.
8
In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
Ultrason Imaging. 2015 Apr;37(2):101-16. doi: 10.1177/0161734614547281. Epub 2014 Aug 12.
9
Clinical Utility of Fetal Short-Lag Spatial Coherence Imaging.
Ultrasound Med Biol. 2018 Apr;44(4):794-806. doi: 10.1016/j.ultrasmedbio.2017.12.006. Epub 2018 Jan 11.
10
Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1265-76. doi: 10.1109/TUFFC.2014.006909.

引用本文的文献

1
Spatial Coherence in Medical Ultrasound: A Review.
Ultrasound Med Biol. 2022 Jun;48(6):975-996. doi: 10.1016/j.ultrasmedbio.2022.01.009. Epub 2022 Mar 11.
2
Reverberation Clutter Suppression Using 2-D Spatial Coherence Analysis.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jan;69(1):84-97. doi: 10.1109/TUFFC.2021.3108059. Epub 2021 Dec 31.
3
Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Mar 20. doi: 10.1109/TUFFC.2019.2906553.
4
Robust Short-Lag Spatial Coherence Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):366-377. doi: 10.1109/TUFFC.2017.2780084.
5
Blocked Elements in 1-D and 2-D Arrays-Part II: Compensation Methods as Applied to Large Coherent Apertures.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jun;64(6):922-936. doi: 10.1109/TUFFC.2017.2683562. Epub 2017 Mar 16.
6
Blocked Elements in 1-D and 2-D Arrays-Part I: Detection and Basic Compensation on Simulated and In Vivo Targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jun;64(6):910-921. doi: 10.1109/TUFFC.2017.2683559. Epub 2017 Mar 16.
7
Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1101-12. doi: 10.1109/TUFFC.2014.3010.

本文引用的文献

1
Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1101-12. doi: 10.1109/TUFFC.2014.3010.
2
Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):463-80. doi: 10.1109/TUFFC.2013.2590.
3
Short-lag spatial coherence of backscattered echoes: imaging characteristics.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.
4
Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
Ultrason Imaging. 2011 Apr;33(2):119-33. doi: 10.1177/016173461103300203.
5
Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2157-66. doi: 10.1109/TUFFC.2009.1298.
6
Quantitative assessment of the magnitude, impact and spatial extent of ultrasonic clutter.
Ultrason Imaging. 2008 Jul;30(3):151-68. doi: 10.1177/016173460803000302.
7
Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction.
Ultrasound Med Biol. 2008 Sep;34(9):1387-95. doi: 10.1016/j.ultrasmedbio.2008.01.015. Epub 2008 Apr 18.
8
High-speed ultrasound volumetric imaging system. II. Parallel processing and image display.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):109-15. doi: 10.1109/58.68467.
9
Multilayer piezoelectric ceramics for two-dimensional array transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(5):761-71. doi: 10.1109/58.308512.
10
Phase-aberration correction with a 3-D ultrasound scanner: feasibility study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1432-9. doi: 10.1109/tuffc.2006.1665100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验