Jones Walton D
Department of Biological Sciences, KAIST, Daejeon, Korea.
BMB Rep. 2009 Nov 30;42(11):705-12. doi: 10.5483/bmbrep.2009.42.11.705.
Our understanding of the relationships between genes, brains, and behaviors has changed a lot since the first behavioral mutants were isolated in the fly bottles of the Benzer lab at Caltech (1), but Drosophila is still an excellent model system for studying the neurobiology of behavior. Recent advances provide an unprecedented level of control over fly neural circuits. Efforts are underway to add to existing GAL4-driver lines that permit exogenous expression of genetic tools in small populations of neurons. Combining these driver lines with a variety of inducible UAS lines permits the visualization of neuronal morphology, connectivity, and activity. These driver lines also make it possible to specifically ablate, inhibit, or activate subsets of neurons and assess their roles in the generation of behavioral responses. Here, I will briefly review the extensive arsenal now available to drosophilists for investigating the neuronal control of behavior.
自首批行为突变体在加州理工学院本泽实验室的果蝇瓶中被分离出来以来(1),我们对基因、大脑和行为之间关系的理解发生了很大变化,但果蝇仍是研究行为神经生物学的优秀模型系统。最近的进展为控制果蝇神经回路提供了前所未有的水平。目前正在努力增加现有的GAL4驱动系,这些驱动系允许在少量神经元中外源表达遗传工具。将这些驱动系与各种可诱导的UAS系相结合,可以观察神经元的形态、连接性和活性。这些驱动系还使得特异性消融、抑制或激活神经元亚群并评估它们在行为反应产生中的作用成为可能。在这里,我将简要回顾一下现在可供果蝇研究人员用于研究行为的神经元控制的大量工具。