Sengupta Saheli, Chen Ziying, Efromson John, Bègue Aurélien, Harfouche Mark, Adegbesan Ayorinde S, Urquhart Amari E, Chan Yick Bun, Yang Siyuan, Henry Sarah A, Palavicino-Maggio Caroline B
Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA.
McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
bioRxiv. 2025 Jul 13:2025.07.10.663947. doi: 10.1101/2025.07.10.663947.
Aggression is a nearly universal behavior used to secure food, territory, and mates across species, including the fruit fly . In fruit flies, both sexes display aggression through stereotypical motor patterns. This, along with their sophisticated genetic and molecular toolkit, makes an excellent model for studying aggression. While male- and female-specific aggressive motor programs have been qualitatively described, automated systems for quantifying these behaviors in freely moving flies remain limited in their ability to combine high-resolution analysis with high throughput. Here, we pair a high-resolution, high-throughput imaging system (the Kestrel) with DeepLabCut pose estimation to create a pipeline that tracks multiple freely moving fly pairs and quantifies social dynamics with high fidelity. We validated body-part tracking using published benchmarks. The platform reliably reproduced a known phenotype: heightened female aggression following thermogenetic activation of cholinergic pC1 neurons in female brain. It also detected increased unilateral wing extension, a courtship display inversely related to aggression, between two males upon activating a previously uncharacterized ~40-neuron group in the male brain. Pose-based analysis revealed locomotive differences between experimental and control groups, and subtle, genotype-specific variations in head butts and UWEs. This workflow enables high-throughput screening and mechanistic dissection of social behaviors.
攻击行为是一种几乎普遍存在的行为,用于在包括果蝇在内的跨物种中获取食物、领地和配偶。在果蝇中,两性都通过刻板的运动模式表现出攻击性。这一点,连同其复杂的遗传和分子工具包,使其成为研究攻击行为的优秀模型。虽然已经定性描述了雄性和雌性特异性的攻击运动程序,但用于在自由移动的果蝇中量化这些行为的自动化系统,在将高分辨率分析与高通量相结合的能力方面仍然有限。在这里,我们将高分辨率、高通量成像系统(Kestrel)与深度实验室切割姿态估计相结合,创建了一个管道,该管道可以跟踪多对自由移动的果蝇,并以高保真度量化社会动态。我们使用已发表的基准验证了身体部位跟踪。该平台可靠地再现了一种已知的表型:雌性大脑中胆碱能pC1神经元热基因激活后雌性攻击性增强。它还检测到,在激活雄性大脑中一个以前未表征的约40个神经元的群体后,两只雄性之间的单侧翅膀伸展增加,这是一种与攻击行为呈负相关的求偶表现。基于姿态的分析揭示了实验组和对照组之间的运动差异,以及头部撞击和单侧翅膀伸展中细微的、基因型特异性的变化。这种工作流程能够对社会行为进行高通量筛选和机制剖析。