Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
Biochem Biophys Res Commun. 2010 Jan 1;391(1):703-8. doi: 10.1016/j.bbrc.2009.11.124. Epub 2009 Nov 26.
Low molecular mass purine nucleoside phosphorylases (PNPs, E.C. 2.4.2.1) are homotrimeric enzymes that are tightly inhibited by immucillins. Due to the positive charge on the ribose like part (iminoribitol moiety) and protonation of the N7 atom of the purine ring, immucillins are believed to act as transition state analogues. Over a wide range of concentrations, immucillins bind with strong negative cooperativity to PNPs, so that only every third binding site of the enzyme is occupied (third-of-the-sites binding). 9-(5',5'-difluoro-5'-phosphonopentyl)-9-deazaguanine (DFPP-DG) shares with immucillins the protonation of the N7, but not the positive charge on the ribose like part of the molecule. We have previously shown that DFPP-DG interacts with PNPs with subnanomolar inhibition constant. Here, we report additional biochemical experiments to demonstrate that the inhibitor can be bound with the same K(d) ( approximately 190pM) to all three substrate binding sites of the trimeric PNP, and a crystal structure of PNP in complex with DFPP-DG at 1.45A resolution, the highest resolution published for PNPs so far. The crystals contain the full PNP homotrimer in the asymmetric unit. DFPP-DG molecules are bound in superimposable manner and with full occupancies to all three PNP subunits. Thus the postulated third-of-the-sites binding of immucillins should be rather attribute to the second feature of the transition state, ribooxocarbenium ion character of the ligand or to the coexistence of both features characteristic for the transition state. The DFPP-DG/PNP complex structure confirms the earlier observations, that the loop from Pro57 to Gly66 covering the phosphate-binding site cannot be stabilized by phosphonate analogues. The loop from Glu250 to Gln266 covering the base-binding site is organized by the interactions of Asn243 with the Hoogsteen edge of the purine base of analogues bearing one feature of the postulated transition state (protonated N7 position).
低相对分子质量嘌呤核苷磷酸化酶(PNP,E.C. 2.4.2.1)是三聚体酶,其被免疫抑制剂紧密抑制。由于核糖类似部分(次黄醇部分)上的正电荷和嘌呤环的 N7 原子的质子化,免疫抑制剂被认为是过渡态类似物。在广泛的浓度范围内,免疫抑制剂与 PNP 以强负协同作用结合,以至于酶的只有每第三个结合位点被占据(三分之一结合位点)。9-(5',5'-二氟-5'-膦戊基)-9-去氮鸟嘌呤(DFPP-DG)与免疫抑制剂共享 N7 的质子化,但不共享分子核糖类似部分的正电荷。我们之前已经表明,DFPP-DG 与 PNP 以亚纳摩尔抑制常数相互作用。在这里,我们报告了额外的生化实验,以证明抑制剂可以以相同的 K(d)(约 190pM)与三聚体 PNP 的所有三个底物结合位点结合,以及分辨率为 1.45A 的 PNP 与 DFPP-DG 复合物的晶体结构,这是迄今为止发表的 PNP 的最高分辨率。晶体包含不对称单位中的完整 PNP 三聚体。DFPP-DG 分子以可叠加的方式和完全占据的方式结合到所有三个 PNP 亚基上。因此,免疫抑制剂的假定三分之一结合位点应该归因于过渡态的第二个特征,配体的核糖氧碳正离子特征或过渡态的两个特征的共存。DFPP-DG/PNP 复合物结构证实了早期的观察结果,即从 Pro57 到 Gly66 的环覆盖磷酸结合位点不能被膦酸类似物稳定。从 Glu250 到 Gln266 的环覆盖碱基结合位点由 Asn243 与类似物的嘌呤碱基的 Hoogsteen 边缘的相互作用组织,该类似物具有假定过渡态的一个特征(质子化的 N7 位置)。