Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
Artif Intell Med. 2010 Feb-Mar;48(2-3):99-106. doi: 10.1016/j.artmed.2009.07.009. Epub 2009 Nov 26.
Schizophrenia is a chronic psychiatric disorder that affects about 1% of the population globally. A tremendous amount of effort has been expended in the past decade, including more than 2400 association studies, to identify genes influencing susceptibility to the disorder. However, few genes or markers have been reliably replicated. The wealth of this information calls for an integration of gene association data, evidence-based gene ranking, and follow-up replication in large sample. The objective of this study is to develop and evaluate evidence-based gene ranking methods and to examine the features of top-ranking candidate genes for schizophrenia.
We proposed a gene-based approach for selecting and prioritizing candidate genes by combining odds ratios (ORs) of multiple markers in each association study and then combining ORs in multiple studies of a gene. We named it combination-combination OR method (CCOR). CCOR is similar to our recently published method, which first selects the largest OR of the markers in each study and then combines these ORs in multiple studies (i.e., selection-combination OR method, SCOR), but differs in selecting representative OR in each study. Features of top-ranking genes were examined by Gene Ontology terms and gene expression in tissues.
Our evaluation suggested that the SCOR method overall outperforms the CCOR method. Using the SCOR, a list of 75 top-ranking genes was selected for schizophrenia candidate genes (SZGenes). We found that SZGenes had strong correlation with neuro-related functional terms and were highly expressed in brain-related tissues.
The scientific landscape for schizophrenia genetics and other complex disease studies is expected to change dramatically in the next a few years, thus, the gene-based combined OR method is useful in candidate gene selection for follow-up association studies and in further artificial intelligence in medicine. This method for prioritization of candidate genes can be applied to other complex diseases such as depression, anxiety, nicotine dependence, alcohol dependence, and cardiovascular diseases.
精神分裂症是一种影响全球约 1%人口的慢性精神疾病。在过去的十年中,人们付出了巨大的努力,包括进行了超过 2400 项关联研究,以确定影响易感性的基因。然而,很少有基因或标记得到可靠的复制。这些信息的丰富性要求整合基因关联数据、基于证据的基因排序以及在大样本中进行后续复制。本研究的目的是开发和评估基于证据的基因排序方法,并研究精神分裂症的顶级候选基因的特征。
我们提出了一种基于基因的方法,通过组合每个关联研究中多个标记的优势比 (OR),然后组合多个基因研究中的 OR,来选择和优先考虑候选基因。我们称之为组合-组合 OR 方法 (CCOR)。CCOR 类似于我们最近发表的方法,该方法首先选择每个研究中最大的标记 OR,然后组合多个研究中的这些 OR(即选择-组合 OR 方法,SCOR),但在选择每个研究中的代表性 OR 方面有所不同。通过基因本体论术语和组织中的基因表达来检查顶级基因的特征。
我们的评估表明,SCOR 方法总体上优于 CCOR 方法。使用 SCOR,选择了 75 个排名最高的基因作为精神分裂症候选基因 (SZGenes)。我们发现 SZGenes 与神经相关功能术语有很强的相关性,并在与大脑相关的组织中高度表达。
精神分裂症遗传学和其他复杂疾病研究的科学格局预计在未来几年将发生巨大变化,因此,基于基因的组合 OR 方法可用于候选基因的后续关联研究,并可进一步应用于人工智能医学。这种候选基因排序的方法可应用于其他复杂疾病,如抑郁症、焦虑症、尼古丁依赖、酒精依赖和心血管疾病。