Suppr超能文献

通过构建基于人工智能的增强可重复性方法,识别反映精神分裂症病因的基因特征。

Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility.

机构信息

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.

出版信息

CNS Neurosci Ther. 2019 Sep;25(9):1054-1063. doi: 10.1111/cns.13196. Epub 2019 Jul 27.

Abstract

AIMS

As one of the most fundamental questions in modern science, "what causes schizophrenia (SZ)" remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies is found to be extremely low due to the incapability of available feature selection methods and the lack of measurement on validating signatures' robustness. These irreproducible results have significantly limited our understanding of the etiology of SZ.

METHODS

In this study, a new feature selection strategy was developed, and a comprehensive analysis was then conducted to ensure a reliable signature discovery. Particularly, the new strategy (a) combined multiple randomized sampling with consensus scoring and (b) assessed gene ranking consistency among different datasets, and a comprehensive analysis among nine independent studies was conducted.

RESULTS

Based on a first-ever evaluation of methods' reproducibility that was cross-validated by nine independent studies, the newly developed strategy was found to be superior to the traditional ones. As a result, 33 genes were consistently identified from multiple datasets by the new strategy as differentially expressed, which might facilitate our understanding of the mechanism underlying the etiology of SZ.

CONCLUSION

A new strategy capable of enhancing the reproducibility of feature selection in current SZ research was successfully constructed and validated. A group of candidate genes identified in this study should be considered as great potential for revealing the etiology of SZ.

摘要

目的

作为现代科学中最基本的问题之一,“精神分裂症(SZ)的病因是什么”仍然是一个深刻的谜团,因为缺乏客观的基因标记。由于现有特征选择方法的能力不足以及缺乏对签名稳健性的测量,通过独立研究确定的基因特征的可重复性被发现非常低。这些不可复制的结果极大地限制了我们对 SZ 病因的理解。

方法

在这项研究中,开发了一种新的特征选择策略,然后进行了全面分析,以确保可靠的签名发现。特别是,新策略 (a) 将多次随机抽样与共识评分相结合,以及 (b) 评估不同数据集之间的基因排名一致性,并对九个独立研究进行了综合分析。

结果

基于对方法可重复性的首次评估,该评估通过九个独立研究进行了交叉验证,发现新开发的策略优于传统策略。结果,通过新策略从多个数据集一致鉴定出 33 个差异表达的基因,这可能有助于我们理解 SZ 病因的机制。

结论

成功构建并验证了一种能够提高当前 SZ 研究中特征选择可重复性的新策略。本研究中鉴定的一组候选基因应被视为揭示 SZ 病因的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/106b/6698965/1bf0fd40750e/CNS-25-1054-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验