Suppr超能文献

基于主成分空间的大鼠睡眠手动分类。

Manual rat sleep classification in principal component space.

机构信息

The Pennsylvania State University College of Medicine, Hershey, PA, USA.

出版信息

Neurosci Lett. 2010 Jan 18;469(1):97-101. doi: 10.1016/j.neulet.2009.11.052. Epub 2009 Nov 26.

Abstract

A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5 min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.

摘要

描述了一种使用主成分分析(PCA)对大鼠睡眠记录进行评分的简单方法,可将其分为清醒、快速眼动(REM)睡眠或非快速眼动(NREM)睡眠。PCA 用于将从每个时段提取的特征的维度降低到三个,然后将投影绘制在散点图中,其中聚类是显而易见的。然后直接手动选择聚类,一次性对整个记录进行分类。该方法在一组十只 24 小时大鼠脑电图(EEG)和肌电图(EMG)记录中进行了测试。由两位人类评分员进行的传统时段评分的分类与另外两位人类评分员使用新的 PCA 方法进行的分类进行了盲法比较。总体内部评分员中位数百分比一致性在 93.7%到 94.9%之间。Cohen's kappa 系数中位数在 0.890 到 0.909 之间。PCA 方法平均需要大约 5 分钟对每个 24 小时的记录进行分类。与传统睡眠评分相比,该方法具有良好的准确性和减少的时间,这表明该方法可能对睡眠研究有用。

相似文献

1
Manual rat sleep classification in principal component space.基于主成分空间的大鼠睡眠手动分类。
Neurosci Lett. 2010 Jan 18;469(1):97-101. doi: 10.1016/j.neulet.2009.11.052. Epub 2009 Nov 26.
6
Design and validation of a computer-based sleep-scoring algorithm.基于计算机的睡眠评分算法的设计与验证
J Neurosci Methods. 2004 Feb 15;133(1-2):71-80. doi: 10.1016/j.jneumeth.2003.09.025.
7
Ischemic stroke selectively inhibits REM sleep of rats.缺血性脑卒中选择性抑制大鼠的快速眼动睡眠。
Exp Neurol. 2011 Dec;232(2):168-75. doi: 10.1016/j.expneurol.2011.08.020. Epub 2011 Aug 30.
8
Optimized single electroencephalogram channel sleep staging in rats.大鼠单导联脑电图睡眠分期的优化。
Lab Anim. 2010 Oct;44(4):312-22. doi: 10.1258/la.2010.009081. Epub 2010 Jul 7.

引用本文的文献

4
Covert sleep-related biological processes are revealed by probabilistic analysis in .概率分析揭示了睡眠相关的生物过程的隐蔽性。
Proc Natl Acad Sci U S A. 2020 May 5;117(18):10024-10034. doi: 10.1073/pnas.1917573117. Epub 2020 Apr 17.

本文引用的文献

1
Automated analysis of sleep-wake state in rats.大鼠睡眠-觉醒状态的自动分析。
J Neurosci Methods. 2009 Nov 15;184(2):263-74. doi: 10.1016/j.jneumeth.2009.08.014. Epub 2009 Aug 22.
3
Mammalian-like features of sleep structure in zebra finches.斑胸草雀睡眠结构中的类哺乳动物特征
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9081-6. doi: 10.1073/pnas.0703452105. Epub 2008 Jun 25.
4
Sleep-stage scoring in the rat using a support vector machine.使用支持向量机对大鼠睡眠阶段进行评分。
J Neurosci Methods. 2008 Mar 15;168(2):524-34. doi: 10.1016/j.jneumeth.2007.10.027. Epub 2007 Nov 17.
6
Design and validation of a computer-based sleep-scoring algorithm.基于计算机的睡眠评分算法的设计与验证
J Neurosci Methods. 2004 Feb 15;133(1-2):71-80. doi: 10.1016/j.jneumeth.2003.09.025.
7
Automated sleep staging in rat with a standard spreadsheet.使用标准电子表格对大鼠进行自动睡眠分期
J Neurosci Methods. 2003 Nov 30;130(1):93-101. doi: 10.1016/s0165-0270(03)00229-2.
8
Automated sleep staging systems in rats.大鼠自动睡眠分期系统
J Neurosci Methods. 1999 May 1;88(2):111-22. doi: 10.1016/s0165-0270(99)00027-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验