Suppr超能文献

在清醒-睡眠转换时启动依赖睡眠的皮质-海马相关性。

Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

作者信息

Haggerty Daniel C, Ji Daoyun

机构信息

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; and.

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; and Department of Neuroscience, Baylor College of Medicine, Houston, Texas

出版信息

J Neurophysiol. 2014 Oct 1;112(7):1763-74. doi: 10.1152/jn.00783.2013. Epub 2014 Jul 9.

Abstract

Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions.

摘要

睡眠参与记忆巩固。当前理论认为,依赖睡眠的记忆巩固需要海马体与新皮层之间进行活跃的信息交流。的确,已知在慢波睡眠期间海马体和各个新皮层区域的神经元活动是相关联的。然而,从清醒状态过渡到慢波睡眠是一个渐进的过程。在清醒 - 睡眠转换过程中海马体 - 皮层的相关性是如何建立的尚不清楚。通过检测大鼠海马体和视觉皮层中的局部场电位和多单元活动,我们发现清醒 - 睡眠转换的特征是海马体中的尖波涟漪事件和皮层中的高压棘波事件,这两者都伴随着相应区域高度同步的多单元活动。海马体涟漪事件比皮层高压棘波事件出现得更早,并且皮层高压棘波的出现会减弱海马体涟漪的发生率。这种减弱导致海马体 - 皮层多单元活动中暂时的弱相关性,随着大脑进入慢波睡眠,这种相关性最终会演变为强相关性。结果表明,海马体 - 皮层的相关性是通过协同的两步状态变化建立的,第一步是使每个脑区内的神经元放电同步,然后是使两个区域之间的同步活动耦合。

相似文献

1
Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.
J Neurophysiol. 2014 Oct 1;112(7):1763-74. doi: 10.1152/jn.00783.2013. Epub 2014 Jul 9.
2
Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
J Neurosci. 2016 Oct 12;36(41):10663-10672. doi: 10.1523/JNEUROSCI.1042-16.2016.
3
Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
J Neurosci. 2017 Dec 6;37(49):11789-11805. doi: 10.1523/JNEUROSCI.2291-17.2017. Epub 2017 Oct 31.
4
LSD degrades hippocampal spatial representations and suppresses hippocampal-visual cortical interactions.
Cell Rep. 2021 Sep 14;36(11):109714. doi: 10.1016/j.celrep.2021.109714.
5
Hippocampal ripples as a mode of communication with cortical and subcortical areas.
Hippocampus. 2020 Jan;30(1):39-49. doi: 10.1002/hipo.22997. Epub 2018 Nov 13.
6
Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness.
Cell Rep. 2015 Nov 17;13(7):1327-1335. doi: 10.1016/j.celrep.2015.10.005. Epub 2015 Nov 5.
8
Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
J Neurosci. 2019 Jan 16;39(3):434-444. doi: 10.1523/JNEUROSCI.2107-18.2018. Epub 2018 Nov 20.
9
A cortical-hippocampal-cortical loop of information processing during memory consolidation.
Nat Neurosci. 2017 Feb;20(2):251-259. doi: 10.1038/nn.4457. Epub 2016 Dec 12.
10
Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep.
Neuron. 1998 Nov;21(5):1123-8. doi: 10.1016/s0896-6273(00)80629-7.

引用本文的文献

2
LSD degrades hippocampal spatial representations and suppresses hippocampal-visual cortical interactions.
Cell Rep. 2021 Sep 14;36(11):109714. doi: 10.1016/j.celrep.2021.109714.
3
Altered Cortical and Hippocampal Excitability in TgF344-AD Rats Modeling Alzheimer's Disease Pathology.
Cereb Cortex. 2019 Jun 1;29(6):2716-2727. doi: 10.1093/cercor/bhy140.
4
Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
Neuron. 2017 Sep 27;96(1):217-227.e4. doi: 10.1016/j.neuron.2017.09.017.
5
NEVER forget: negative emotional valence enhances recapitulation.
Psychon Bull Rev. 2018 Jun;25(3):870-891. doi: 10.3758/s13423-017-1313-9.
6
Deciphering Neural Codes of Memory during Sleep.
Trends Neurosci. 2017 May;40(5):260-275. doi: 10.1016/j.tins.2017.03.005. Epub 2017 Apr 5.
8
Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
Hippocampus. 2015 Oct;25(10):1073-188. doi: 10.1002/hipo.22488.

本文引用的文献

1
Comparison of sleep spindles and theta oscillations in the hippocampus.
J Neurosci. 2014 Jan 8;34(2):662-74. doi: 10.1523/JNEUROSCI.0552-13.2014.
2
Cognitive neuroscience: Time, space and memory.
Nature. 2013 May 30;497(7451):568-9. doi: 10.1038/497568a.
3
Biasing the content of hippocampal replay during sleep.
Nat Neurosci. 2012 Oct;15(10):1439-44. doi: 10.1038/nn.3203. Epub 2012 Sep 2.
4
Dynamics of retrieval strategies for remote memories.
Cell. 2011 Oct 28;147(3):678-89. doi: 10.1016/j.cell.2011.09.033. Epub 2011 Oct 20.
5
The memory function of sleep.
Nat Rev Neurosci. 2010 Feb;11(2):114-26. doi: 10.1038/nrn2762. Epub 2010 Jan 4.
6
Strengthening individual memories by reactivating them during sleep.
Science. 2009 Nov 20;326(5956):1079. doi: 10.1126/science.1179013.
7
Manual rat sleep classification in principal component space.
Neurosci Lett. 2010 Jan 18;469(1):97-101. doi: 10.1016/j.neulet.2009.11.052. Epub 2009 Nov 26.
9
Selective suppression of hippocampal ripples impairs spatial memory.
Nat Neurosci. 2009 Oct;12(10):1222-3. doi: 10.1038/nn.2384. Epub 2009 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验