Eaton-Peabody Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
Hear Res. 2010 May;263(1-2):16-25. doi: 10.1016/j.heares.2009.11.014. Epub 2009 Nov 27.
An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain G(MEP) and trans-cochlear-partition differential sound pressure DeltaP(CP) in chinchilla from 100 Hz to 30 kHz derived from measurements of intracochlear sound pressures in scala vestibuli P(SV) and scala tympani P(ST) and ear-canal sound pressure near the tympanic membrane P(TM). These measurements span the chinchilla's auditory range. G(MEP) had constant magnitude of about 20 dB between 300 Hz and 20 kHz and phase that implies a 40-micros delay, values with some similarities to previous measurements in chinchilla and other species. DeltaP(CP) was similar to G(MEP) below about 10 kHz and lower in magnitude at higher frequencies, decreasing to 0 dB at 20 kHz. The high-frequency rolloff correlates with the audiogram and supports the idea that middle-ear transmission limits high-frequency hearing, providing a stronger link between inner-ear macromechanics and hearing. We estimate the cochlear partition impedance Z(CP) from these and previous data. The chinchilla may be a useful animal model for exploring the effects of non-acoustic inner-ear stimulation such as "bone conduction" on cochlear mechanics.
描述内耳阻抗和病变对内耳和中耳力学的影响的重要步骤是量化正常耳的中耳和内耳功能。我们从鼓阶内的声压 P(SV)和中阶内的声压 P(ST)以及鼓膜附近的耳道声压 P(TM)的测量中,给出了从 100 Hz 到 30 kHz 的南美栗鼠的中耳声压增益 G(MEP)和跨耳蜗隔板差分声压 DeltaP(CP)。这些测量跨越了南美栗鼠的听觉范围。G(MEP)在 300 Hz 到 20 kHz 之间的幅度约为 20 dB,相位意味着 40 微秒的延迟,这些值与南美栗鼠和其他物种的先前测量有一些相似之处。DeltaP(CP)在大约 10 kHz 以下与 G(MEP)相似,在更高的频率下幅度更低,在 20 kHz 时降至 0 dB。高频衰减与听力图相关,支持了中耳传输限制高频听力的观点,为内耳宏观力学和听力之间提供了更强的联系。我们从这些数据和以前的数据中估计了耳蜗隔板阻抗 Z(CP)。南美栗鼠可能是一种有用的动物模型,可用于探索非声学内耳刺激(如“骨传导”)对内耳力学的影响。