Suppr超能文献

南美栗鼠中耳压力增益与耳蜗分隔压差。

Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.

机构信息

Eaton-Peabody Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.

出版信息

Hear Res. 2010 May;263(1-2):16-25. doi: 10.1016/j.heares.2009.11.014. Epub 2009 Nov 27.

Abstract

An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain G(MEP) and trans-cochlear-partition differential sound pressure DeltaP(CP) in chinchilla from 100 Hz to 30 kHz derived from measurements of intracochlear sound pressures in scala vestibuli P(SV) and scala tympani P(ST) and ear-canal sound pressure near the tympanic membrane P(TM). These measurements span the chinchilla's auditory range. G(MEP) had constant magnitude of about 20 dB between 300 Hz and 20 kHz and phase that implies a 40-micros delay, values with some similarities to previous measurements in chinchilla and other species. DeltaP(CP) was similar to G(MEP) below about 10 kHz and lower in magnitude at higher frequencies, decreasing to 0 dB at 20 kHz. The high-frequency rolloff correlates with the audiogram and supports the idea that middle-ear transmission limits high-frequency hearing, providing a stronger link between inner-ear macromechanics and hearing. We estimate the cochlear partition impedance Z(CP) from these and previous data. The chinchilla may be a useful animal model for exploring the effects of non-acoustic inner-ear stimulation such as "bone conduction" on cochlear mechanics.

摘要

描述内耳阻抗和病变对内耳和中耳力学的影响的重要步骤是量化正常耳的中耳和内耳功能。我们从鼓阶内的声压 P(SV)和中阶内的声压 P(ST)以及鼓膜附近的耳道声压 P(TM)的测量中,给出了从 100 Hz 到 30 kHz 的南美栗鼠的中耳声压增益 G(MEP)和跨耳蜗隔板差分声压 DeltaP(CP)。这些测量跨越了南美栗鼠的听觉范围。G(MEP)在 300 Hz 到 20 kHz 之间的幅度约为 20 dB,相位意味着 40 微秒的延迟,这些值与南美栗鼠和其他物种的先前测量有一些相似之处。DeltaP(CP)在大约 10 kHz 以下与 G(MEP)相似,在更高的频率下幅度更低,在 20 kHz 时降至 0 dB。高频衰减与听力图相关,支持了中耳传输限制高频听力的观点,为内耳宏观力学和听力之间提供了更强的联系。我们从这些数据和以前的数据中估计了耳蜗隔板阻抗 Z(CP)。南美栗鼠可能是一种有用的动物模型,可用于探索非声学内耳刺激(如“骨传导”)对内耳力学的影响。

相似文献

3
Differential intracochlear sound pressure measurements in normal human temporal bones.正常人类颞骨内耳蜗内声压的差异测量
J Assoc Res Otolaryngol. 2009 Mar;10(1):23-36. doi: 10.1007/s10162-008-0150-y. Epub 2008 Dec 9.
5
Sound pressures in the basal turn of the cat cochlea.猫耳蜗底转的声压
J Acoust Soc Am. 1980 Dec;68(6):1676-89. doi: 10.1121/1.385200.
10
Transmission matrix analysis of the chinchilla middle ear.灰鼠中耳的传输矩阵分析
J Acoust Soc Am. 2007 Aug;122(2):932-42. doi: 10.1121/1.2747157.

引用本文的文献

1
Middle Ear Mechanics in the Barn Owl.仓鸮的中耳力学
J Morphol. 2025 Jan;286(1):e70020. doi: 10.1002/jmor.70020.
2
Petrosal morphology and cochlear function in Mesozoic stem therians.中生代哺乳类干群的岩部形态与耳蜗功能。
PLoS One. 2019 Aug 14;14(8):e0209457. doi: 10.1371/journal.pone.0209457. eCollection 2019.
5
Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs.使用畸变产物耳声发射估计往返外中耳增益
J Assoc Res Otolaryngol. 2017 Feb;18(1):121-138. doi: 10.1007/s10162-016-0592-6. Epub 2016 Oct 28.

本文引用的文献

3
Differential intracochlear sound pressure measurements in normal human temporal bones.正常人类颞骨内耳蜗内声压的差异测量
J Assoc Res Otolaryngol. 2009 Mar;10(1):23-36. doi: 10.1007/s10162-008-0150-y. Epub 2008 Dec 9.
4
The role of organ of Corti mass in passive cochlear tuning.柯蒂器质量在耳蜗被动调谐中的作用。
Biophys J. 2007 Nov 15;93(10):3434-50. doi: 10.1529/biophysj.107.109744. Epub 2007 Sep 28.
7
Structures that contribute to middle-ear admittance in chinchilla.对灰鼠中耳导纳有贡献的结构。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Dec;192(12):1287-311. doi: 10.1007/s00359-006-0159-9. Epub 2006 Aug 30.
9
Middle ear forward and reverse transmission in gerbil.沙鼠中耳的正向和反向传播
J Neurophysiol. 2006 May;95(5):2951-61. doi: 10.1152/jn.01214.2005. Epub 2006 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验