Suppr超能文献

从100赫兹到80千赫兹,沙鼠耳道内的声压分布和功率流。

Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.

作者信息

Ravicz Michael E, Olson Elizabeth S, Rosowski John J

机构信息

Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.

出版信息

J Acoust Soc Am. 2007 Oct;122(4):2154-73. doi: 10.1121/1.2769625.

Abstract

Sound pressure was mapped in the bony ear canal of gerbils during closed-field sound stimulation at frequencies from 0.1 to 80 kHz. A 1.27-mm-diam probe-tube microphone or a 0.17-mm-diam fiber-optic miniature microphone was positioned along approximately longitudinal trajectories within the 2.3-mm-diam ear canal. Substantial spatial variations in sound pressure, sharp minima in magnitude, and half-cycle phase changes occurred at frequencies >30 kHz. The sound frequencies of these transitions increased with decreasing distance from the tympanic membrane (TM). Sound pressure measured orthogonally across the surface of the TM showed only small variations at frequencies below 60 kHz. Hence, the ear canal sound field can be described fairly well as a one-dimensional standing wave pattern. Ear-canal power reflectance estimated from longitudinal spatial variations was roughly constant at 0.2-0.5 at frequencies between 30 and 45 kHz. In contrast, reflectance increased at higher frequencies to at least 0.8 above 60 kHz. Sound pressure was also mapped in a microphone-terminated uniform tube-an "artificial ear." Comparison with ear canal sound fields suggests that an artificial ear or "artificial cavity calibration" technique may underestimate the in situ sound pressure by 5-15 dB between 40 and 60 kHz.

摘要

在0.1至80kHz频率的封闭声场刺激过程中,对沙鼠的骨性耳道内的声压进行了测绘。一个直径1.27毫米的探管麦克风或一个直径0.17毫米的光纤微型麦克风沿着直径2.3毫米的耳道内大致纵向轨迹放置。在频率大于30kHz时,声压出现了显著的空间变化、幅度上的尖锐最小值以及半周期相位变化。这些转变的声频随着距鼓膜(TM)距离的减小而增加。在TM表面正交测量的声压在60kHz以下频率仅显示出小的变化。因此,耳道声场可以相当好地描述为一维驻波模式。根据纵向空间变化估计的耳道功率反射率在30至45kHz频率下大致恒定在0.2 - 0.5。相比之下,在更高频率下,反射率增加,在60kHz以上至少达到0.8。还在一个以麦克风为终端的均匀管(“人工耳”)中测绘了声压。与耳道声场的比较表明,人工耳或“人工腔校准”技术在40至60kHz之间可能会将原位声压低估5 - 15dB。

相似文献

1
Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
J Acoust Soc Am. 2007 Oct;122(4):2154-73. doi: 10.1121/1.2769625.
3
The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
J Assoc Res Otolaryngol. 2015 Aug;16(4):413-32. doi: 10.1007/s10162-015-0516-x. Epub 2015 Apr 25.
4
External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
J Acoust Soc Am. 2014 Mar;135(3):1294-312. doi: 10.1121/1.4864475.
7
Miniature microphone probe tube measurements in the external auditory canal.
J Acoust Soc Am. 1993 Feb;93(2):907-19. doi: 10.1121/1.405452.
8
Factors contributing to bone conduction: the outer ear.
J Acoust Soc Am. 2003 Feb;113(2):902-13. doi: 10.1121/1.1534606.

引用本文的文献

2
The Auditory Mechanics of the Outer Ear of the Bush Cricket: A Numerical Approach.
Biophys J. 2020 Jan 21;118(2):464-475. doi: 10.1016/j.bpj.2019.11.3394. Epub 2019 Dec 12.
4
Compensating for ear-canal acoustics when measuring otoacoustic emissions.
J Acoust Soc Am. 2017 Jan;141(1):515. doi: 10.1121/1.4973618.
5
Pressure in the Cochlea During Infrared Irradiation.
IEEE Trans Biomed Eng. 2018 Jul;65(7):1575-1584. doi: 10.1109/TBME.2016.2636149. Epub 2016 Dec 7.
6
A study of sound transmission in an abstract middle ear using physical and finite element models.
J Acoust Soc Am. 2015 Nov;138(5):2972-85. doi: 10.1121/1.4934515.
7
Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds.
J Assoc Res Otolaryngol. 2015 Aug;16(4):447-57. doi: 10.1007/s10162-015-0524-x. Epub 2015 Jun 12.
8
The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
J Assoc Res Otolaryngol. 2015 Aug;16(4):413-32. doi: 10.1007/s10162-015-0516-x. Epub 2015 Apr 25.
10
External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
J Acoust Soc Am. 2014 Mar;135(3):1294-312. doi: 10.1121/1.4864475.

本文引用的文献

1
Scala vestibuli pressure and three-dimensional stapes velocity measured in direct succession in gerbil.
J Acoust Soc Am. 2007 May;121(5 Pt1):2774-91. doi: 10.1121/1.2709843.
2
Middle ear forward and reverse transmission in gerbil.
J Neurophysiol. 2006 May;95(5):2951-61. doi: 10.1152/jn.01214.2005. Epub 2006 Feb 15.
3
Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus.
J Acoust Soc Am. 2005 Aug;118(2):872-86. doi: 10.1121/1.1944647.
4
High-frequency sensitivity of the mature gerbil cochlea and its development.
Audiol Neurootol. 2003 Jan-Feb;8(1):19-27. doi: 10.1159/000067892.
5
The roles of the external, middle, and inner ears in determining the bandwidth of hearing.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13206-10. doi: 10.1073/pnas.202492699. Epub 2002 Sep 18.
6
Development of wide-band middle ear transmission in the Mongolian gerbil.
J Acoust Soc Am. 2002 Jan;111(1 Pt 1):261-70. doi: 10.1121/1.1420382.
7
Wideband reflectance tympanometry in chinchillas and human.
J Acoust Soc Am. 2001 Sep;110(3 Pt 1):1453-64. doi: 10.1121/1.1394219.
8
Intracochlear pressure measurements related to cochlear tuning.
J Acoust Soc Am. 2001 Jul;110(1):349-67. doi: 10.1121/1.1369098.
9
A reconsideration of sound calibration in the mouse.
J Neurosci Methods. 2001 Mar 30;106(1):57-67. doi: 10.1016/s0165-0270(01)00329-6.
10
Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea.
Hear Res. 2001 Jan;151(1-2):48-60. doi: 10.1016/s0378-5955(00)00211-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验