Suppr超能文献

Elman、长短时记忆和 Mona 神经网络的迷宫学习比较。

A maze learning comparison of Elman, long short-term memory, and Mona neural networks.

机构信息

School of Information Technology, Illinois State University, Normal, IL 61790, USA.

出版信息

Neural Netw. 2010 Mar;23(2):306-13. doi: 10.1016/j.neunet.2009.11.002. Epub 2009 Nov 18.

Abstract

This study compares the maze learning performance of three artificial neural network architectures: an Elman recurrent neural network, a long short-term memory (LSTM) network, and Mona, a goal-seeking neural network. The mazes are networks of distinctly marked rooms randomly interconnected by doors that open probabilistically. The mazes are used to examine two important problems related to artificial neural networks: (1) the retention of long-term state information and (2) the modular use of learned information. For the former, mazes impose a context learning demand: at the beginning of the maze, an initial door choice forms a context that must be remembered until the end of the maze, where the same numbered door must be chosen again in order to reach the goal. For the latter, the effect of modular and non-modular training is examined. In modular training, the door associations are trained in separate trials from the intervening maze paths, and only presented together in testing trials. All networks performed well on mazes without the context learning requirement. The Mona and LSTM networks performed well on context learning with non-modular training; the Elman performance degraded as the task length increased. Mona also performed well for modular training; both the LSTM and Elman networks performed poorly with modular training.

摘要

本研究比较了三种人工神经网络架构的迷津学习性能

Elman 递归神经网络、长短期记忆 (LSTM) 网络和 Mona 目标寻求神经网络。迷津是由门随机连接的具有明显标记房间的网络,门的开启具有概率性。这些迷津用于研究与人工神经网络相关的两个重要问题:(1)长期状态信息的保留;(2)所学信息的模块化使用。对于前者,迷津提出了上下文学习需求:在迷津开始时,初始门的选择形成了一个必须记住的上下文,直到迷津结束,必须再次选择相同编号的门才能到达目标。对于后者,研究了模块化和非模块化训练的效果。在模块化训练中,门关联在单独的试验中进行训练,而在测试试验中仅一起呈现。所有网络在没有上下文学习要求的迷津上表现良好。Mona 和 LSTM 网络在非模块化训练的上下文学习中表现良好;Elman 网络的性能随着任务长度的增加而下降。Mona 也在模块化训练中表现良好;LSTM 和 Elman 网络在模块化训练中表现不佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验