Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA.
J Biol Chem. 2010 Feb 12;285(7):4319-27. doi: 10.1074/jbc.M109.063172. Epub 2009 Nov 28.
Protein-protein interactions represent an important post-translational mechanism for endothelial nitric-oxide synthase (eNOS) regulation. We have previously reported that beta-actin is associated with eNOS oxygenase domain and that association of eNOS with beta-actin increases eNOS activity and nitric oxide (NO) production. In the present study, we found that beta-actin-induced increase in NO production was accompanied by decrease in superoxide formation. A synthetic actin-binding sequence (ABS) peptide 326 with amino acid sequence corresponding to residues 326-333 of human eNOS, one of the putative ABSs, specifically bound to beta-actin and prevented eNOS association with beta-actin in vitro. Peptide 326 also prevented beta-actin-induced decrease in superoxide formation and increase in NO and L-citrulline production. A modified peptide 326 replacing hydrophobic amino acids leucine and tryptophan with neutral alanine was unable to interfere with eNOS-beta-actin binding and to prevent beta-actin-induced changes in NO and superoxide formation. Site-directed mutagenesis of the actin-binding domain of eNOS replacing leucine and tryptophan with alanine yielded an eNOS mutant that exhibited reduced eNOS-beta-actin association, decreased NO production, and increased superoxide formation in COS-7 cells. Disruption of eNOS-beta-actin interaction in endothelial cells using ABS peptide 326 resulted in decreased NO production, increased superoxide formation, and decreased endothelial monolayer wound repair, which was prevented by PEG-SOD and NO donor NOC-18. Taken together, this novel finding indicates that beta-actin binding to eNOS through residues 326-333 in the eNOS protein results in shifting the enzymatic activity from superoxide formation toward NO production. Modulation of NO and superoxide formation from eNOS by beta-actin plays an important role in endothelial function.
蛋白质-蛋白质相互作用是内皮型一氧化氮合酶 (eNOS) 调节的一种重要的翻译后机制。我们之前曾报道过β-肌动蛋白与 eNOS 氧化酶结构域相关联,并且 eNOS 与β-肌动蛋白的结合会增加 eNOS 活性和一氧化氮 (NO) 的产生。在本研究中,我们发现β-肌动蛋白诱导的 NO 产生增加伴随着超氧化物形成的减少。一种合成的肌动蛋白结合序列 (ABS) 肽 326,其氨基酸序列对应于人类 eNOS 的残基 326-333,是一个假定的 ABS 之一,特异性地与β-肌动蛋白结合,并防止 eNOS 在体外与β-肌动蛋白结合。肽 326 还防止β-肌动蛋白诱导的超氧化物形成减少、NO 和 L-瓜氨酸产生增加。一种用中性丙氨酸取代疏水性氨基酸亮氨酸和色氨酸的修饰肽 326 不能干扰 eNOS-β-肌动蛋白结合,并不能防止β-肌动蛋白诱导的 NO 和超氧化物形成的变化。用丙氨酸取代 eNOS 的肌动蛋白结合域中的亮氨酸和色氨酸的定点突变产生了一种 eNOS 突变体,该突变体表现出 eNOS-β-肌动蛋白结合减少、NO 产生减少和超氧化物形成增加。使用 ABS 肽 326 破坏内皮细胞中的 eNOS-β-肌动蛋白相互作用会导致 NO 产生减少、超氧化物形成增加和内皮单层伤口修复减少,这可以通过 PEG-SOD 和 NO 供体 NOC-18 来预防。总之,这一新发现表明,β-肌动蛋白通过 eNOS 蛋白中的残基 326-333 与 eNOS 结合,导致酶活性从超氧化物形成转向 NO 产生。β-肌动蛋白对 eNOS 调节的 NO 和超氧化物形成的调节在血管内皮功能中起着重要作用。