Suppr超能文献

高效的染料敏化串联太阳能电池光阳极。

Highly efficient photocathodes for dye-sensitized tandem solar cells.

出版信息

Nat Mater. 2010 Jan;9(1):31-5. doi: 10.1038/nmat2588. Epub 2009 Nov 29.

Abstract

Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components.

摘要

基于介孔半导体电极的薄膜染料敏化太阳能电池(DSC)是传统硅器件的低成本替代品。高效 DSC 通常作为光电阳极(n-DSC)运行,其中光电流是由染料敏化电子注入 n 型半导体产生的。染料敏化光阴极(p-DSC)以反向模式运行,其中染料激发后,p 型半导体中的电子迅速转移到染料(染料敏化空穴注入)。这种 p-DSC 和 n-DSC 可以组合构建串联太阳能电池(pn-DSC),其理论效率限制远远超过单结 DSC(参考文献 4)。然而,到目前为止,这种串联 pn-DSC 的效率受到可用 p-DSC 性能差的限制(参考文献 3、5-15)。在这里,我们首次表明,p-DSC 可以将吸收的光子转化为电子,产率高达 96%,与以前报道的光阴极相比,能量转换效率提高了七倍。作为光阴极敏化剂研究的供体-受体染料包含一个可变长度的寡噻吩桥,该桥提供了对光生电荷载流子空间分离的控制。结果,电荷复合被减缓了几个数量级,可以构建串联 pn-DSC,其效率超过其单个组件的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验