Hidrogo-Rico Mario Alberto, Nedev Nicola, Horley Paul, Mendívil María Isabel, Castillo-Saenz Jhonathan, Martínez-Guerra Edgar, Juarez-Perez Emilio J, Aguirre-Tostado Francisco Servando, Susarrey-Arce Arturo, Martínez-Guerra Eduardo
Centro de Investigación en Materiales Avanzados, S.C. (CIMAV Subsede Monterrey), Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66628 Apodaca, Nuevo León, Mexico.
Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P., 21280 Mexicali, Baja California, Mexico.
ACS Omega. 2024 Dec 30;10(1):422-438. doi: 10.1021/acsomega.4c06606. eCollection 2025 Jan 14.
Thermal atomic layer deposition (TALD) and plasma atomic layer deposition (PALD) were used for producing thin NiO films from nickel(II) acetylacetonate Ni(acac), employing different oxidizing agents (deionized water HO, ozone O, and molecular oxygen O). The films were deposited at 300 °C (TALD) and 220 °C (PALD) over glass substrates; their physical and chemical properties were considerably influenced by the choice of oxidizing agents. In particular, ALD(HO) samples had a low growth per cycle (GPC) and a high concentration of defects. The best NiO parameters were achieved with PALD(O), featuring high GPC (0.07 nm/cycle), high optical transparency in the visible region, electrical resistivity (1.18 × 10 Ω·cm), good carrier concentration (8.82 × 10 cm), and common mobility (5.98 cm/V·s). The resulting NiO films are polycrystalline and homogeneous in thickness and composition. According to ultraviolet photoelectron spectroscopy (UPS), work function φ and the valence band maximum can be tuned by the choice of the coreactant employed, with variations of up to ∼1 eV between TALD and PALD synthesis. Our results suggest that PALD permits one to achieve a better energy band alignment of NiO and CsFAMAPbBrI perovskite, which is promising for solar cell applications.
热原子层沉积(TALD)和等离子体原子层沉积(PALD)用于从乙酰丙酮镍(II)Ni(acac)制备NiO薄膜,采用不同的氧化剂(去离子水H₂O、臭氧O₃和分子氧O₂)。薄膜在300°C(TALD)和220°C(PALD)下沉积在玻璃基板上;它们的物理和化学性质受到氧化剂选择的显著影响。特别是,ALD(H₂O)样品具有低的每循环生长速率(GPC)和高浓度的缺陷。使用PALD(O₃)获得了最佳的NiO参数,其具有高GPC(0.07 nm/循环)、在可见光区域具有高光学透明度、电阻率(1.18×10⁶Ω·cm)、良好的载流子浓度(8.82×10¹⁸cm⁻³)和迁移率(5.98 cm²/V·s)。所得的NiO薄膜是多晶的,并且在厚度和组成上是均匀的。根据紫外光电子能谱(UPS),功函数φ和价带最大值可以通过所采用的共反应物的选择进行调节,在TALD和PALD合成之间变化高达约1 eV。我们的结果表明,PALD能够实现NiO与CsFAMAPbBrI钙钛矿更好的能带对齐,这对于太阳能电池应用是有前景的。