Suppr超能文献

用于肌肉生理学研究的小角X射线衍射技术的最新进展

RECENT IMPROVEMENTS IN SMALL ANGLE X-RAY DIFFRACTION FOR THE STUDY OF MUSCLE PHYSIOLOGY.

作者信息

Reconditi Massimo

机构信息

Università di Firenze, Lab di Fisiologia - DBAG, c/o Dip. di Fisica, via Sansone 1, I-50019 Sesto Fiorentino, ITALY.

出版信息

Rep Prog Phys. 2006 Oct 1;69(10):2709-2759. doi: 10.1088/0034-4885/69/10/R01.

Abstract

The molecular mechanism of muscle contraction is one of the most important unresolved problems in Biology and Biophysics. Notwithstanding the great advances of recent years, it is not yet known in detail how the molecular motor in muscle, the class II myosin, converts the free energy of ATP hydrolysis into work by interacting with its track, the actin filament, neither it is understood how the high efficiency in energy conversion depends on the cooperative action of myosin motors working in parallel along the actin filament. Researches in muscle contraction imply the combination of mechanical, biochemical and structural methods in studies that span from tissue to single molecule. Therefore, more than for any other research field, progresses in the comprehension of muscle contraction at molecular level are related to, and in turn contribute to, the advancement of methods in Biophysics.This review will focus on the progresses achieved by time resolved small angle X-ray scattering (SAXS) from muscle, an approach made possible by the highly ordered arrangement of both the contractile proteins myosin and actin in the ca 2 mum long structural unit the sarcomere that repeats along the whole length of the muscle cell. Among the time resolved structural techniques, SAXS has proved to be the most powerful method of investigation, as it allows the molecular motor to be studied in situ, in intact single muscle cells, where it is possible to combine the structural study with fast mechanical methods that synchronize the action of the molecular motors. The latest development of this technique allows Angstrom-scale measurements of the axial movement of the motors that pull the actin filament toward the centre of the sarcomere, by exploiting the X-ray interference between the two arrays of myosin motors in the two halves of the sarcomere.

摘要

肌肉收缩的分子机制是生物学和生物物理学中最重要的尚未解决的问题之一。尽管近年来取得了巨大进展,但仍不清楚肌肉中的分子马达——II类肌球蛋白——如何通过与其轨道肌动蛋白丝相互作用将ATP水解的自由能转化为功,也不清楚能量转换的高效率如何依赖于沿肌动蛋白丝平行工作的肌球蛋白马达的协同作用。对肌肉收缩的研究意味着在从组织到单分子的研究中结合机械、生化和结构方法。因此,与任何其他研究领域相比,在分子水平上对肌肉收缩的理解进展与生物物理学方法的进步相关,反过来又促进了这些方法的进步。本综述将重点关注通过对肌肉进行时间分辨小角X射线散射(SAXS)所取得的进展,这种方法之所以可行,是因为收缩蛋白肌球蛋白和肌动蛋白在约2微米长的结构单元肌节中高度有序排列,肌节沿肌肉细胞的全长重复。在时间分辨结构技术中,SAXS已被证明是最强大的研究方法,因为它允许在完整的单个肌肉细胞中原位研究分子马达,在这种情况下,可以将结构研究与使分子马达动作同步的快速机械方法相结合。该技术的最新发展使得通过利用肌节两半部分中两排肌球蛋白马达之间的X射线干涉,能够对将肌动蛋白丝拉向肌节中心的马达的轴向运动进行埃级测量。

相似文献

1
RECENT IMPROVEMENTS IN SMALL ANGLE X-RAY DIFFRACTION FOR THE STUDY OF MUSCLE PHYSIOLOGY.
Rep Prog Phys. 2006 Oct 1;69(10):2709-2759. doi: 10.1088/0034-4885/69/10/R01.
2
Cooperative actions between myosin heads bring effective functions.
Biosystems. 2007 Apr;88(3):293-300. doi: 10.1016/j.biosystems.2006.03.013. Epub 2006 Nov 10.
4
Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11502-11507. doi: 10.1073/pnas.1905028116. Epub 2019 May 20.
5
Structural changes in myosin motors and filaments during relaxation of skeletal muscle.
J Physiol. 2009 Sep 15;587(Pt 18):4509-21. doi: 10.1113/jphysiol.2009.176222. Epub 2009 Aug 3.
6
Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
J Physiol. 2017 Feb 15;595(4):1127-1142. doi: 10.1113/JP273299. Epub 2016 Dec 12.
8
Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement.
J Mol Biol. 2009 Jul 10;390(2):168-81. doi: 10.1016/j.jmb.2009.04.047. Epub 2009 Apr 24.
9
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.

引用本文的文献

1
2
An integrated picture of the structural pathways controlling the heart performance.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2410893121. doi: 10.1073/pnas.2410893121. Epub 2024 Dec 4.
3
Load-dependence of the activation of myosin filaments in heart muscle.
J Physiol. 2024 Dec;602(24):6889-6907. doi: 10.1113/JP287434. Epub 2024 Nov 17.
4
Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle.
J Gen Physiol. 2024 Dec 2;156(12). doi: 10.1085/jgp.202413604. Epub 2024 Oct 7.
5
Calcium has a direct effect on thick filament activation in porcine myocardium.
J Gen Physiol. 2024 Nov 4;156(11). doi: 10.1085/jgp.202413545. Epub 2024 Sep 20.
8
Differences in thick filament activation in fast rodent skeletal muscle and slow porcine cardiac muscle.
J Physiol. 2024 Jun;602(12):2751-2762. doi: 10.1113/JP286072. Epub 2024 May 2.
9

本文引用的文献

2
The four phases of heat-production of muscle.
J Physiol. 1920 Aug 19;54(1-2):84-128. doi: 10.1113/jphysiol.1920.sp001913.
3
How X-ray Diffraction with Synchrotron Radiation Got Started.
J Synchrotron Radiat. 1998 May 1;5(Pt 3):147-53. doi: 10.1107/S0909049597018578.
4
The myosin motor in muscle generates a smaller and slower working stroke at higher load.
Nature. 2004 Apr 1;428(6982):578-81. doi: 10.1038/nature02380.
5
THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE.
Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297-318. doi: 10.1098/rspb.1964.0004.
7
Heat production and energy liberation in the early part of a muscular contraction.
J Physiol. 1963 Apr;166(1):211-24. doi: 10.1113/jphysiol.1963.sp007101.
8
Kinetics of muscular contraction: the approach to the steady state.
Nature. 1960 Nov 19;188:666-8. doi: 10.1038/188666a0.
9
Muscle structure and theories of contraction.
Prog Biophys Biophys Chem. 1957;7:255-318.
10
The double array of filaments in cross-striated muscle.
J Biophys Biochem Cytol. 1957 Sep 25;3(5):631-48. doi: 10.1083/jcb.3.5.631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验