Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
Mol Plant. 2009 Nov;2(6):1359-72. doi: 10.1093/mp/ssp076. Epub 2009 Sep 10.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in P. patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss P. patens.
叶绿体和细菌细胞通过二分法分裂。在这种缢缩分裂中,关键的蛋白质是 FtsZ,它是一种自我组装的 GTP 酶,类似于真核细胞的微管蛋白。在原核生物中,FtsZ 几乎总是由单个基因编码,而植物则有几个核编码的 FtsZ 同源物。在种子植物中,这些蛋白质分为两个家族,所有的蛋白质都专门被导入到质体中。相比之下,基础陆生植物拟南芥,一种苔藓,编码了第三个 FtsZ 家族,其中一个成员。这种蛋白质被双重靶向到质体和细胞质中。在这里,我们报告了在拟南芥中所有 ftsZ 基因的靶向基因缺失。对单基因和双基因敲除突变体的后续分析表明,不同的 FtsZ 同工型之间的相互作用不仅存在于质体分裂中,还存在于叶绿体形态、细胞图案、植物发育和重力感应中。这些结果支持了质体骨架的概念及其与细胞骨架的功能整合,至少在苔藓拟南芥中是这样。