Suppr超能文献

正电子发射断层成像术在前列腺癌中的应用。

Positron emission tomography imaging of prostate cancer.

机构信息

Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, USA.

出版信息

Amino Acids. 2010 Jun;39(1):11-27. doi: 10.1007/s00726-009-0394-9. Epub 2009 Nov 28.

Abstract

Prostate cancer (PCa) is the second leading cause of cancer death among men in the United States. Positron emission tomography (PET), a non-invasive, sensitive, and quantitative imaging technique, can facilitate personalized management of PCa patients. There are two critical needs for PET imaging of PCa, early detection of primary lesions and accurate imaging of PCa bone metastasis, the predominant cause of death in PCa. Because the most widely used PET tracer in the clinic, (18)F-fluoro-2-deoxy-2-D-glucose ((18)F-FDG), does not meet these needs, a wide variety of PET tracers have been developed for PCa imaging that span an enormous size range from small molecules to intact antibodies. In this review, we will first summarize small-molecule-based PET tracers for PCa imaging, which measure certain biological events, such as cell membrane metabolism, fatty acid synthesis, and receptor expression. Next, we will discuss radiolabeled amino acid derivatives (e.g. methionine, leucine, tryptophan, and cysteine analogs), which are primarily based on the increased amino acid transport of PCa cells. Peptide-based tracers for PET imaging of PCa, mostly based on the bombesin peptide and its derivatives which bind to the gastrin-releasing peptide receptor, will then be presented in detail. We will also cover radiolabeled antibodies and antibody fragments (e.g. diabodies and minibodies) for PET imaging of PCa, targeting integrin alpha(v)beta(3), EphA2, the epidermal growth factor receptor, or the prostate stem cell antigen. Lastly, we will identify future directions for the development of novel PET tracers for PCa imaging, which may eventually lead to personalized management of PCa patients.

摘要

前列腺癌(PCa)是美国男性癌症死亡的第二大主要原因。正电子发射断层扫描(PET)是一种非侵入性、敏感且定量的成像技术,可促进 PCa 患者的个性化管理。PCa 的 PET 成像有两个关键需求,即原发性病变的早期检测和 PCa 骨转移的准确成像,后者是 PCa 死亡的主要原因。由于临床上最广泛使用的 PET 示踪剂(18)F-氟代-2-脱氧-2-D-葡萄糖((18)F-FDG)无法满足这些需求,因此已经开发了各种用于 PCa 成像的 PET 示踪剂,从小分子到完整抗体,大小范围广泛。在这篇综述中,我们将首先总结用于 PCa 成像的基于小分子的 PET 示踪剂,这些示踪剂可测量某些生物事件,如细胞膜代谢、脂肪酸合成和受体表达。接下来,我们将讨论放射性标记的氨基酸衍生物(例如蛋氨酸、亮氨酸、色氨酸和半胱氨酸类似物),这些衍生物主要基于 PCa 细胞中氨基酸转运的增加。然后将详细介绍用于 PCa PET 成像的基于肽的示踪剂,这些示踪剂主要基于结合胃泌素释放肽受体的蛙皮素肽及其衍生物。我们还将介绍用于 PCa PET 成像的放射性标记抗体和抗体片段(例如双抗体和迷你抗体),这些示踪剂靶向整合素α(v)β(3)、EphA2、表皮生长因子受体或前列腺干细胞抗原。最后,我们将确定用于 PCa 成像的新型 PET 示踪剂的未来发展方向,这可能最终导致 PCa 患者的个性化管理。

相似文献

1
Positron emission tomography imaging of prostate cancer.
Amino Acids. 2010 Jun;39(1):11-27. doi: 10.1007/s00726-009-0394-9. Epub 2009 Nov 28.
2
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
3
Radionuclide based imaging of prostate cancer.
Curr Top Med Chem. 2010;10(16):1600-16. doi: 10.2174/156802610793176774.
4
PET Tracers Beyond FDG in Prostate Cancer.
Semin Nucl Med. 2016 Nov;46(6):507-521. doi: 10.1053/j.semnuclmed.2016.07.005. Epub 2016 Sep 7.
8
New Targets for PET Molecular Imaging of Prostate Cancer.
Semin Nucl Med. 2019 Jul;49(4):326-336. doi: 10.1053/j.semnuclmed.2019.02.001. Epub 2019 Mar 9.

引用本文的文献

1
Molecular pathogenesis, mechanism and therapy of Cav1 in prostate cancer.
Discov Oncol. 2023 Nov 1;14(1):196. doi: 10.1007/s12672-023-00813-0.
2
Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy.
World J Stem Cells. 2022 Apr 26;14(4):267-286. doi: 10.4252/wjsc.v14.i4.267.
3
Immuno-PET imaging of VEGFR-2 expression in prostate cancer with Zr-labeled ramucirumab.
Am J Cancer Res. 2019 Sep 1;9(9):2037-2046. eCollection 2019.
5
Clinicopathological study of 9 cases of prostate cancer involving the rectal wall.
Diagn Pathol. 2017 Jan 17;12(1):8. doi: 10.1186/s13000-017-0599-2.
9
Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals.
World J Gastrointest Oncol. 2016 Feb 15;8(2):165-72. doi: 10.4251/wjgo.v8.i2.165.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
3
Molecular imaging of prostate cancer.
Methods. 2009 Jun;48(2):193-9. doi: 10.1016/j.ymeth.2009.03.021. Epub 2009 Apr 9.
4
(68)Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging.
Eur J Nucl Med Mol Imaging. 2009 Sep;36(9):1483-94. doi: 10.1007/s00259-009-1123-z. Epub 2009 Apr 10.
6
Molecular markers in prostate cancer. Part II: potential roles in management.
Asian J Androl. 2009 Jan;11(1):22-7. doi: 10.1038/aja.2008.23. Epub 2008 Dec 1.
7
Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors.
Clin Cancer Res. 2008 Nov 15;14(22):7488-96. doi: 10.1158/1078-0432.CCR-07-5093.
8
Novel tracers and their development for the imaging of metastatic prostate cancer.
J Nucl Med. 2008 Dec;49(12):2031-41. doi: 10.2967/jnumed.108.050658. Epub 2008 Nov 7.
9
10
Imaging of integrins as biomarkers for tumor angiogenesis.
Curr Pharm Des. 2008;14(28):2943-73. doi: 10.2174/138161208786404308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验