Wang Xiujuan, Huang Yong, Lavrov Dennis V, Gu Xun
Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA.
BMC Evol Biol. 2009 Nov 30;9:275. doi: 10.1186/1471-2148-9-275.
Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families.
The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64%) consisted of both mitochondrial and cytosolic (non-mitochondrial) proteins (mt-cy families) while the remaining 33 (36%) were composed of mitochondrial proteins (mt-mt families). Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1) relocalization from mitochondria to cytosol, 2) from cytosol to mitochondria and 3) multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on the genomic scale was robust to potential gene misannotation.
Our results suggest that protein subcellular relocalization is an important mechanism for the retention and gain of function of duplicated genes in animal genome evolution.
基因和基因组复制是进化中的主要创造力。最近,蛋白质亚细胞重新定位,即新定位,被认为是复制基因保留的机制之一。这一假设在酵母基因组分析中得到了支持,但尚未在动物基因组中得到充分验证。为了评估亚细胞重新定位对动物基因组中复制基因保留的重要性,我们通过重建线粒体多基因家族的系统发育,对人类基因组中的核编码线粒体蛋白进行了系统分析。
本研究选择的456种人类线粒体蛋白被聚类为305个基因家族,其中包括92个多基因家族。在多基因家族中,59个(64%)由线粒体和胞质(非线粒体)蛋白组成(线粒体-胞质家族),其余33个(36%)由线粒体蛋白组成(线粒体-线粒体家族)。对线粒体-胞质家族的系统发育分析揭示了基因复制后其新定位的三种不同情况:1)从线粒体重新定位到胞质,2)从胞质重新定位到线粒体,3)多次亚细胞重新定位。新定位最常见的是通过N端线粒体靶向信号的获得或丢失实现的。大多数检测到的亚细胞重新定位事件发生在动物进化的早期,早于四足动物的进化。线粒体-线粒体蛋白家族表现出略有不同的模式,基因复制在时间上分布更为均匀。然而,对于这两种类型的蛋白家族,大多数复制事件似乎大致与脊椎动物进化早期的两轮基因组复制相吻合。最后,我们评估了线粒体蛋白注释不准确和不完整的影响,发现我们关于基因复制后亚细胞重新定位在基因组水平上的重要性的结论对潜在的基因错误注释具有鲁棒性。
我们的结果表明,蛋白质亚细胞重新定位是动物基因组进化中复制基因保留和功能获得的重要机制。