Suppr超能文献

利用荧光波动显微镜对异染色质蛋白 1 的动力学和相互作用进行多尺度分析。

Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy.

机构信息

Deutsches Krebsforschungszentrum and BioQuant, Research Group Genome Organization and Function, Heidelberg, Germany.

出版信息

Biophys J. 2009 Dec 2;97(11):2876-85. doi: 10.1016/j.bpj.2009.08.057.

Abstract

Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the repressive heterochromatin state. To elucidate its mobility and interactions, we conducted a comprehensive analysis on different time and length scales by fluorescence fluctuation microscopy in mouse cell lines. The local mobility of HP1alpha and HP1beta was investigated in densely packed pericentric heterochromatin foci and compared with other bona fide euchromatin regions of the nucleus by fluorescence bleaching and correlation methods. A quantitative description of HP1alpha/beta in terms of its concentration, diffusion coefficient, kinetic binding, and dissociation rate constants was derived. Three distinct classes of chromatin-binding sites with average residence times t(res) <or= 0.2 s (class I, dominant in euchromatin), 7 s (class II, dominant in heterochromatin), and approximately 2 min (class III, only in heterochromatin) were identified. HP1 was present at low micromolar concentrations at heterochromatin foci, and required histone H3 lysine 9 methylases Suv39h1/2 for two- to fourfold enrichment at these sites. These findings impose a number of constraints for the mechanism by which HP1 is able to maintain a heterochromatin state.

摘要

异染色质蛋白 1(HP1)是建立和维持抑制性异染色质状态的核心因素。为了阐明其迁移和相互作用,我们通过荧光波动显微镜在小鼠细胞系中进行了不同时间和长度尺度的综合分析。通过荧光漂白和相关方法,研究了 HP1alpha 和 HP1beta 在密集包装的着丝粒异染色质焦点中的局部迁移,并将其与核内其他真正的常染色质区域进行了比较。根据其浓度、扩散系数、动力学结合和离解速率常数,对 HP1alpha/beta 进行了定量描述。鉴定出三种具有平均停留时间 t(res) <= 0.2 s(I 类,在常染色质中占优势)、7 s(II 类,在异染色质中占优势)和大约 2 分钟(III 类,仅在异染色质中)的染色质结合位点。HP1 在异染色质焦点处的浓度低至微摩尔,并且需要组蛋白 H3 赖氨酸 9 甲基转移酶 Suv39h1/2 才能在这些位点富集两到四倍。这些发现为 HP1 维持异染色质状态的机制施加了一些限制。

相似文献

2
High- and low-mobility populations of HP1 in heterochromatin of mammalian cells.
Mol Biol Cell. 2004 Jun;15(6):2819-33. doi: 10.1091/mbc.e03-11-0827. Epub 2004 Apr 2.
4
Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1.
J Biol Chem. 2013 Aug 30;288(35):25285-25296. doi: 10.1074/jbc.M113.470724. Epub 2013 Jul 7.
7
9
Maintenance of stable heterochromatin domains by dynamic HP1 binding.
Science. 2003 Jan 31;299(5607):721-5. doi: 10.1126/science.1078572.
10
Pericentromeric heterochromatin domains are maintained without accumulation of HP1.
Mol Biol Cell. 2007 Apr;18(4):1464-71. doi: 10.1091/mbc.e06-01-0025. Epub 2007 Feb 21.

引用本文的文献

1
HP1 loses its chromatin clustering and phase separation function across evolution.
Nat Commun. 2025 Jul 10;16(1):6375. doi: 10.1038/s41467-025-61749-3.
2
Understanding how genetically encoded tags and crowding agents affect phase separation by heterochromatin protein HP1α.
Cell Rep Methods. 2025 May 19;5(5):101029. doi: 10.1016/j.crmeth.2025.101029. Epub 2025 Apr 21.
4
Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations.
Commun Biol. 2025 Feb 25;8(1):308. doi: 10.1038/s42003-025-07732-6.
6
The condensation of HP1α/Swi6 imparts nuclear stiffness.
Cell Rep. 2024 Jul 23;43(7):114373. doi: 10.1016/j.celrep.2024.114373. Epub 2024 Jun 20.
7
Experimentally Probing the Effect of Confinement Geometry on Lipid Diffusion.
J Phys Chem B. 2024 May 9;128(18):4404-4413. doi: 10.1021/acs.jpcb.3c07388. Epub 2024 Apr 4.
8
Relationship between lysine methyltransferase levels and heterochromatin gene repression in living cells and in silico.
PNAS Nexus. 2023 Mar 7;2(4):pgad062. doi: 10.1093/pnasnexus/pgad062. eCollection 2023 Apr.
9
Combined optical fluorescence microscopy and X-ray tomography reveals substructures in cell nuclei in 3D.
Biomed Opt Express. 2022 Aug 25;13(9):4954-4969. doi: 10.1364/BOE.462493. eCollection 2022 Sep 1.
10
Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers.
ACS Nano. 2022 Jul 26;16(7):10754-10767. doi: 10.1021/acsnano.2c02660. Epub 2022 Jul 8.

本文引用的文献

2
Cellular mechanism for targeting heterochromatin formation in Drosophila.
Int Rev Cell Mol Biol. 2009;273:1-47. doi: 10.1016/S1937-6448(08)01801-7.
4
Genome organization: balancing stability and plasticity.
Biochim Biophys Acta. 2008 Nov;1783(11):2061-79. doi: 10.1016/j.bbamcr.2008.07.022. Epub 2008 Aug 3.
5
The heterochromatin protein 1 (HP1) family: put away a bias toward HP1.
Mol Cells. 2008 Sep 30;26(3):217-27. Epub 2008 Jul 30.
6
The effect of internucleosomal interaction on folding of the chromatin fiber.
Biophys J. 2008 Oct;95(8):3677-91. doi: 10.1529/biophysj.107.120543. Epub 2008 Jul 25.
7
Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin.
Nat Struct Mol Biol. 2008 Apr;15(4):381-8. doi: 10.1038/nsmb.1406. Epub 2008 Mar 16.
9
Plasticity of HP1 proteins in mammalian cells.
J Cell Sci. 2007 Oct 1;120(Pt 19):3415-24. doi: 10.1242/jcs.012914. Epub 2007 Sep 12.
10
Pericentric heterochromatin: dynamic organization during early development in mammals.
Differentiation. 2008 Jan;76(1):15-23. doi: 10.1111/j.1432-0436.2007.00220.x. Epub 2007 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验