Suppr超能文献

相似文献

1
The effect of internucleosomal interaction on folding of the chromatin fiber.
Biophys J. 2008 Oct;95(8):3677-91. doi: 10.1529/biophysj.107.120543. Epub 2008 Jul 25.
2
Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays.
J Biol Chem. 2019 Mar 15;294(11):4233-4246. doi: 10.1074/jbc.RA118.006412. Epub 2019 Jan 10.
3
Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
Biophys J. 2008 Oct;95(8):3692-705. doi: 10.1529/biophysj.107.121079. Epub 2008 Jan 22.
4
Changing chromatin fiber conformation by nucleosome repositioning.
Biophys J. 2014 Nov 4;107(9):2141-50. doi: 10.1016/j.bpj.2014.09.026.
5
Computer simulation of the 30-nanometer chromatin fiber.
Biophys J. 2002 Jun;82(6):2847-59. doi: 10.1016/S0006-3495(02)75627-0.
7
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22. doi: 10.1073/pnas.0903280106. Epub 2009 Jul 27.
8
Chromatosome Structure and Dynamics from Molecular Simulations.
Annu Rev Phys Chem. 2020 Apr 20;71:101-119. doi: 10.1146/annurev-physchem-071119-040043. Epub 2020 Feb 4.
9
A critical role for linker DNA in higher-order folding of chromatin fibers.
Nucleic Acids Res. 2021 Mar 18;49(5):2537-2551. doi: 10.1093/nar/gkab058.

引用本文的文献

2
The Impact of Charge Regulation and Ionic Intranuclear Environment on the Nucleosome Core Particle.
bioRxiv. 2024 Nov 12:2024.11.11.623012. doi: 10.1101/2024.11.11.623012.
3
Regulation of chromatin architecture by protein binding: insights from molecular modeling.
Biophys Rev. 2024 May 9;16(3):331-343. doi: 10.1007/s12551-024-01195-5. eCollection 2024 Jun.
4
Nucleosome spacing controls chromatin spatial structure and accessibility.
Biophys J. 2024 Apr 2;123(7):847-857. doi: 10.1016/j.bpj.2024.02.024. Epub 2024 Feb 27.
5
An associative memory Hamiltonian model for DNA and nucleosomes.
PLoS Comput Biol. 2023 Mar 27;19(3):e1011013. doi: 10.1371/journal.pcbi.1011013. eCollection 2023 Mar.
6
Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies.
Biophys Rep (N Y). 2021 Sep 29;1(2):100028. doi: 10.1016/j.bpr.2021.100028. eCollection 2021 Dec 8.
9
Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
Biophys J. 2022 Dec 20;121(24):4788-4799. doi: 10.1016/j.bpj.2022.10.044. Epub 2022 Nov 2.
10
The Effects of Histone H2B Ubiquitylations on the Nucleosome Structure and Internucleosomal Interactions.
Biochemistry. 2022 Oct 18;61(20):2198-2205. doi: 10.1021/acs.biochem.2c00422. Epub 2022 Sep 16.

本文引用的文献

1
The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin.
Biophys J. 2008 Jun;94(11):4165-72. doi: 10.1529/biophysj.107.113902. Epub 2008 Jan 30.
2
Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn.
J Mol Biol. 2008 Mar 7;376(5):1417-25. doi: 10.1016/j.jmb.2007.12.051. Epub 2008 Jan 3.
3
Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
Biophys J. 2008 Oct;95(8):3692-705. doi: 10.1529/biophysj.107.121079. Epub 2008 Jan 22.
4
Subpiconewton dynamic force spectroscopy using magnetic tweezers.
Biophys J. 2008 Mar 15;94(6):2343-8. doi: 10.1529/biophysj.107.121673. Epub 2007 Dec 7.
5
A variable topology for the 30-nm chromatin fibre.
EMBO Rep. 2007 Dec;8(12):1129-34. doi: 10.1038/sj.embor.7401115.
7
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
8
Higher-order structures of chromatin: the elusive 30 nm fiber.
Cell. 2007 Feb 23;128(4):651-4. doi: 10.1016/j.cell.2007.02.008.
10
Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41. doi: 10.1073/pnas.0604817103. Epub 2006 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验